[Est. by Govt. of Uttarakhand, vide Shri Guru Ram Rai University Act no. 03 of 2017 & recognized by UGC u/s (2f) of UGC Act 1956 # SYLLABUS FOR M.Sc. Zoology (Two-Year Course- Semester System) School of Basic and Applied Sciences (Effective from Academic Session 2023-2024) Revised on 30th July 2024 Ja. Ja Harry White NKons 1 | Page # Master of Science (Zoology) # OUTCOME BASED EDUCATION ### Programme outcomes (POs) Students will be able to: | Students w | /ill be able to: | |------------|--| | PO 1 | Implement strong theoretical and practical knowledge of biological science to solve complex scientific problems. | | PO2 | Problem Analysis: Identify the situation-based problem, formulation and action is taken based on analytical thinking and principles of science. | | PO3 | Execute effective communication through interactive and presenting skills, technical report writing and proper documentation of ideas. | | PO4 | Formulate, design, experimental techniques, scientific tools, analysis of scientific data, interpretation of data and establish a hypothesis for various interdisciplinary research problem. | | PO5 | Create a new conceptual, theoretical and operational approach to address various problem of interdisciplinary fields. | | PO6 | Enables individuals to function effectively in cross-cultural environment as an individual and as a member or leader. | | PO7 | Understand ethical issues, academic and research ethics, need and value of adding, learning, scientific misconduct of a scientist to serve society. | | PO8 | Understand the contribution of scientific knowledge in environmental sciences for sustainable development. | | PO9 | Enhance and adopt employability skills through research, internship and dissertation. | | PO10 | Successfully compete in the state level, national level and international level exam or competition. | | PO11 | Understands the complex evolutionary processes and behavior of animals. | | PO12 | Understanding of environmental conservation processes and its importance, pollution control and biodiversity and protection of endangered species. | # Program Specific Outcome (PSOs) 1 After completion of this course, the student will be able to | PSO 1 | Understand the nature and basic concepts of cell biology, genetics, molecular biology, developmental biology, taxonomy, physiology, ecology & wild life and applied zoology, | |-------|--| | | etc. | | PSO2 | Employ experimental skills for multi-disciplinary research work. | | PSO3 | Understand the applications of biological sciences in Apiculture, Sericulture, Aquaculture, Agriculture and Medicines. | | PSO4 | Gain knowledge about research methodologies, effective communication and skills. | ### Eligibility for admission: Any candidate who has passed the B.Sc. with Zoology as one of the subject/ course papers with not less than 45% marks in aggregate is eligible for admission, However, SC/ST, OBC, and other eligible communities shall be given relaxation as per university norms. 2 | Pag # M.Sc. ZOOLOGY SYLLABUS Duration of the Programme: 2 Years (4 semesters) # STUDY & EVALUATION SCHEME # **Choice-Based Credit System Master of Science (Zoology)** First Semester | S.
N. | Course
Category | Course
Code | Course Name | | Pe | riods | | Evaluation | n scheme | Subject
Total | |----------|--------------------|----------------|---|----|----|-------|----|-------------------------|-------------------|------------------| | | | | | L | Т | P | C | Sessional
(Internal) | External
(ESE) | | | Theo | ory | | | | | | | • | | | | 1 | Core | MZOC101 | Cell Biology & Genetics | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 2 | Core | MZOC102 | Lower Non-Chordata | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | Core | MZOC103 | Molecular Biology, Evolution & Systematics | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 4 | Core | MZOC104 | Computer Application, Biostatistics and Tools & Techniques in Biology | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | Prac | tical | | * , | | | | | | | | | 1 | Core | MZOL105 | Lab course-I, Based on MZOC
101 & 102 | 0 | 0 | 4 | 4 | 40 | 60 | 100 | | 2 | Core | MZOL106 | Lab course-II, Based on MZOC 103 & 104 | 0 | 0 | 4 | 4 | 40 | 60 | 100 | | | | | Total | 12 | | 8 | 20 | 240 | 360 | 600 | L – Lecture, T – Tutorial, P – Practical, C – Credit **Second Semester** | S.
N. | Course
Category | Course
Code | Course Name | | Pe | eriods | - = | Evaluat | ion scheme | Subject
Total | |----------|--------------------|----------------|--|---|----|--------|-----|-------------------------|----------------|------------------| | 14. | | | | L | T | P | С | Sessional
(Internal) | External (ESE) | | | Theo | ry | J | | | | | | | | ¥ | | 1 | Core | MZOC201 | Biotechnology and
Microbiology | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 2 | Core | MZOC202 | Higher Non-Chordata | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | Core | MZOC203 | Animal Physiology | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 4 | Core | MZOC204 | Developmental
Biology | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | Prac | tical | | | | | | | | | | | 1 | Core | MZOL205 | Lab course-I, Based on MZOC201 & MZOC202 | 0 | 0 | 4 | 4 | 40 | 60 | 100 | W. J. Man & M. Was 31 Page # M.Sc. ZOOLOGY SYLLABUS | 2 | Core | MZOL206 | Lab course-II, Based
on MZ0C203 &
MZOC204 | 0 | 0 | 4 | 4 | 40 | 60 | 100 | |-------|------|---------|---|----|---|---|---|----|-----|-----| | Total | | L | | 12 | | | 8 | 20 | 360 | 600 | L - Lecture, T - Tutorial, P - Practical, C - Credit | S. | Course | Course Code | Course Name | | Per | iods | | Evaluatio | | Subject
Total | |------|-----------------|---|--|----|-----|------|----|-------------------------|-------------------|------------------| | N. | Category | | | L | T | P | С | Sessional
(Internal) | External
(ESE) | | | Theo | ry | L | | | | | | | | | | 1 | Core | MZOC301 | Endocrinology and Animal Behavior | 3 | 0 | 0 | 3 | .40 | 60 | 100 | | 2 | Core | MZOC302 | Chordata | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | Elective- | MZOE303/
MZOE304/
MZOE305 | General Ichthyology/
Entomology-I/
Environmental Biology- I | 3 | 0 | 0 , | 3 | 40 | 60 | 100 | | 4 | Elective-
II | (Any one) MZOE306/ MZOE307/ MZOE308 (Any one) | Applied Ichthyology/
Entomology II /
Environmental Biology II | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 5 | Self-
Study* | MZOS311/
MZOS312/
MZOS313
(Any one) | Aquatic Biodiversity/ Economic Zoology & Parasitology/ IPR, Patenting and Bioethics | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | Prac | tical | | , | | | | | | | | | 1 | Core | MZOL309 | Lab course-I, Based on
MZOC301 & MZOC302 | 0 | 0 | 4 | 4 | 20 | 60 | 100 | | 2 | Elective | MZOL310 | Lab course-II, Based on
Electives (MZOE303 & MZOE306/
MZOE304 & MZOE307/ MZOE305 & | 0 | 0 | 4 | 4 | 20 | 60 | 100 | | Tota |
 | | MZOE308) | 12 | | 8 | 20 | 240 | 360 | 600 | | Fo S. | Course | Course | Course Name | | Per | iods | Evaluation | | scheme | Subject
Total | |-------|---------------|---------------------|--|---|-----|------|------------|-------------------------|----------------|------------------| | N. | Category Code | | | L | T | P | С | Sessional
(Internal) | External (ESE) | | | The | ory | | | | | | | | | | | 1 | Core | MZOC401 | Ecology and Wild Life | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | Core | MZOC402 | Immunology & Biochemistry | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | Elective-I | MZOE403/4
04/405 | Fisheries Science/ Applied Entomology/ Applied Environmental Biology | 3 | 0 | 0 | 3 | 40 | 60 | 100 | L-Lecture, T-Tutorial, P-Practical, C-Credit *Self-study marks not to be included while calculating grades. # M.Sc. ZOOLOGY SYLLABUS | 4 | Elective- | MZOE406/4 | Research Methodology in | 1 3 | 0 | 0 | 3 | 40 | 60 | 100 | |-----|--|------------|---------------------------------|------|---|---------|-----|-----|-----|-----| | l | II | 07/408 | Fishery Science/ | | | | 1 | | | | | | 6 | (Any one) | Research Methodology in | ų l | | | | | İ | | | | | | Entomology/ | | | | | | | | | | 1 | - | Research Methodology in | 1 | | | | | | | | | | | Environmental Biology | | | | | | | | | 5 | Elective | MZOE411 | Dissertation | - | - | 10 | 10 | 60 | 240 | 300 | | | | | (in lieu of Electives; MZOE 403 | | ľ | | | | | | | | 1 | | /404 /405 & 406 /407 | 1 | | | | | | İ | | - | ــــــــــــــــــــــــــــــــــــــ | | /408+MZOL410) | | | | | | | | | Pra | ectical | | | | | | | | | | | 1 | Core | MZOL409 | Lab course-I, based on C401 & | 0 | 0 | 4 | 4 | 40 | 60 | 100 | | | | III DE 107 | C402 | ľ | ľ | ٠.
ا | · | , | | | | 2 | Elective | MZOL410 | Lab course-II, based on E | 0 | 0 | 4 | 4 | 40 | 60 | 100 | | | | | 403/404/405 and E | | | | | | | | | | | | 406/407/408 | | | | | | | | | | | | Total | 12 | | 8 | 20 | 240 | 360 | 600 | | | | | 2000 | 7.77 | 8 | | - " | | | | L - Lecture, T - Tutorial, P - Practical, C - Credit #Dissertation shall be allotted to the students securing above 70% in the First & Second Semester together. The dissertation (academic writing based on original research/Training) shall be evaluated jointly by an internal examiner and one external examiner. Total Credits: 80 (Core Credit 60 + Elective Credits 20) with additional 03 credits of self-study, (03 credits of self-study shall be mandatory but not to be included
while calculating the grades). 01 credits= 01 hours of lecture/instructions per week, 01 credit course= 15 hours of lecture per semester Max. Marks for each paper: 100 (40 marks Sessional Tests/exam + 60 marks End Term Test/Exam). Sessional may be in the form of Mid Term Test/exam, Assignment, Seminar & Laboratory Work, Internship, Industrial / Institutional visits, winter/Summer Training based report Writing & Presentation, Report based on field trips, excursions, etc. organized by the Department. #### Examination Scheme: | Components | I st internal | II nd Internal | External | |----------------------------|-----------------------------------|----------------------------------|----------| | Components | (Assignment/Presentation-I, etc.) | (Written | (ESE) | | | (*1551 <u>G</u> | Exam/Attendance/Presentation-II, | | | | | etc.) | | | Weightage (%) | 20 Marks | 20 Marks | 60 | | Weightage (%) Dissertation | 30 Marks | 30 Marks | 240 | Ju. Hon John Short Marsh 5 Pag m / ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC101 | | | 2 | | |-------------|---------------------------|---|---|---|---| | Course Name | : Cell Biology & Genetics | | | | | | Semester | : Ist sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are - 1. To know about the function of cells. - 2. To under the Mendelian Laws. - 3. To know about the disease of cancer. **Course Contents** No. of Credit- 03 Total No of class stipulated = 45Hrs #### UNIT I Theories in Origin of cell and cell as a unit of life. Prokaryotic and Eukaryotic cells. Plasma membrane (Ultrastructure, chemical composition, models of plasma membrane; Specializations of the plasma membrane, functions of plasma membrane). Cell wall and their structural organization, #### UNIT II Structure and functions of the cell organelles: Mitochondria, Ribosomes, Lysosomes, Centrioles, Golgi complex, Endoplasmic reticulum, Nucleus and nucleolus, cytoskeleton. #### UNIT III Molecular aspects of cell division - Cell cycle, Cell cycle regulation. Signal transduction. Cancer and its types, Apoptosis and necrosis, oncogenes and tumors suppressor gene #### **UNIT IV** Classical aspect: Mendelian laws (Law of dominance, Law of Independent assortment). Exception of Mendelian laws, lethal allele, multiple alleles gene interaction (modification of dihybrid ratios) Sex linked inheritance, linkage and crossing over, #### **UNIT V** Fine Structure of gene, Giant Chromosome (Polytene and Lamp brush chromosome), Pedigree analysis in man, genetic disorder, cytoplasmic inheritance and extrachromosomal inheritance, Operon hypothesis, Hardy-Weinberg law and its application, Mutation and its types. # Reference Books: 1. Lewin: Genes, Vol. VII Oxford, 1998, Inded. 2. Straehan& Read: Human Molecular Genetics 1999, John Wiley & Sons Pte. Ltd. 3. Snustad et al: Principles of Genetics 1997, John Wiley & Sons. # M.Sc. ZOOLOGY SYLLABUS 4. De Robertes & Robertis: Cell & Molecular Biology, 1987, Lee & Fabiger Philadelplna ### **Text Books:** - 1. V.B. Rastogi., Introductory Cytology. Ram Nath & Kedar Nath publication, Meerut. - (11th Revised Edition,) - 2. V.B. Rastogi., A Text book of Genetics. Ram Nath & Kedar Nath publication, Meerut. (09th Revised Edition,) - 3. Pk Gupta, Cell & Molecular Biology - 4. Pk Gupta ,Cytology genetics and evolution # Course Outcomes (COs): Upon successful completion of the course a student will be able | pon successi | ar completion of the course a state of | |--------------|---| | CO1 | Remember about cell structure, cell organelles, cell cycle, Mendelian law, | | | chromosomes and gene mutation. | | CO2 | To understand the Mendel's law and the deviations from conventional patterns of inheritance. Structural and functional aspects of the basic unit of life i.e. | | | cell concents their structure and function. | | CO3 | To show structural organization of all cell organelles, cell signalling, sex linked | | | inheritance and genetic disorder. | | CO4 | To analyze cell organelles composition, oncogene, tumour and apoptosis | | CO5 | To evaluate/conclude the genetic disorder and mutation. | | C06 | To formulate numerical problem, Operon hypothesis and Hardi-Weinberg law. | | 1 000 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | CO-PO Mapping | CU-J | PO M | appu | ıg | | | | | | 200 | DO10 | DO11 | DO12 | DCO1 | PSO2 | PSO3 | PSO4 | |--------|------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | POIO | POII | FO12 | 1501 | 1502 | | | | | | | | _ | 1 | | 1 | 2 | 1 | 2 | 2 | 2 | 1 | - | 2 | 1 | | CO1 | 2 | - | 1 | 2 | 1 | | 1 | 2 | - | _ | 2 | 2 | 2 | 2 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 · | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | | | 1 | | - | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | | CO3 | 1 | 2 | 2 | 1 | 2 | . 1 | | | _ | | 1 | 1 | 2 | 2 | 1 | 1 | | CO4 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | | 4 | | - | | | 1 | - | | 2 | 2 | | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | - | 2 | | CO5 | 2 | 1 | - | 2 | 2 | - | 1 | 1 | - | 2 | 2 | _ | | 2 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 1 | | 2 | 1 | 1 | 2 | 2 | • | | - | • | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated do. Mars X Warp 7 | Page # M.Sc. ZOOLOGY SYLLABUS | : MZOC 102 | | | | | | |----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | : Lower Non-Chordata | | | | | | | : Ist sem | | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | | | : Lower Non-Chordata | : Lower Non-Chordata | : Lower Non-Chordata | : Lower Non-Chordata | : Lower Non-Chordata | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are 1. To know about Invertebrates. - 2. To understand the life cycle of Parasites. - 3. To know the phylogeny of invertebrates. **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### **UNIT I** General Classification, Characters of Non-Chordate Phyla, Major and minor Invertebrate phyla, Origin of Higher and lower Invertebrates, Origin of Metazoa, Organisation of Coelom (Acoelomates, Pseudocoelomates, Coelomates). #### UNIT II Protozoa: Nutrition in Protozoa, Locomotion, Locomotory organelles and type of locomotion, Reproduction, Asexual, Sexual Reproduction and parthenogenesis, life cycle of Trypanosoma, Plasmodium, Giardia etc. #### **IINIT III** Porifera: Comparative morphology of all classes, Skeleton, Canal system, Reproduction and Phylogeny of porifera. ### **UNIT IV** Coelenterata: Comparative morphology of all classes, Polymorphism, Coral & coral reefs and their formation. Ctenophora: Brief account and affinities. #### UNIT V Helminthes: Parasitism in Helminthes with life cycles and Pathogenicity of Schistosoma, and Wuchereria. # Reference Books: - 1. Barnes: Invertebrate Zoology (4th ed.), Holt-Saunders, 1980. - 2. Barrington: Invertebrate Structure and function, Nelson, 1987. - 3. Iyer: A Manual of Zoology, Part I. Visawanathan, 1973. - 4. Hickman, Roberts & Hickman: Integrated principles of Zoology (7th ed) TimesMirror, Mosby, - 5. Marshall & William: Textbook of Zoology, Vol I (Parker & Haswell, 7th ed.) Macmillian, 1972 # Text Books: 1. Kotpal, Agrawal & Khetrapal: Modern Text-book of Zoology, Invertebrațes. Rastogi, 1976. # M.Sc. ZOOLOGY SYLLABUS 2. Iyer: A Manual of Zoology, Part I. Visawanathan, 1973. # Course Outcomes (COs): Upon successful completion of the course, a student will be able to | Opon suc | cessiui completion of the course, a student will be able to | |----------|---| | CO1 | Remember structural and functional diversity of non-chordates and demonstrate comprehensive identification abilities of non- chordate diversity. Explain | | | evolutionary relationship amongst non-chordate groups. | | CO2 | Understand the diversity, origin of Metazoans, Classification and character of lower non chordates. life cycle of <i>Trypanosoma</i> , <i>Plasmodium</i> , <i>Giardia etc</i> . | | CO3 | To construct a chart on origin and comparative morphology and system of Porifera and coelenterate | | CO4 | To analyze the various aspects concerning the coelom, nutrition, locomotion, and reproduction of the Protozoa & Porifera. | | CO5 | Evaluating comparative morphology, reproduction, and phylogeny as well as affinities of Porifera and Coelenterata. | | C06 | To write about helminth parasite and their life cycle. Affinities of Ctenophora. | # **CO-PO** Mapping | Course | | 700 | D02 | DO4 | DO5 | DO6 | DO7 | POS | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |--------|-----|-------|------|-----|-----|------------|-----|-----|-----|-------|------|------|------|------|------|--------------| | Course | PO1 | PO2 | POS | PU4 | PUS | POO | 107 | 100 | 10) | 1,010 | 1011 | | | | | | | | | | 9. 7 | | | | | _ | _ | 2 | 2 | 1 | 2 | 2 | 1 | 1 | | CO1 | 1 | 1 | 2 | 2 | 1 | - | 2 | 2 | 2 | 2 | 2 | • | 2 | | - | - | | CO2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | l | 1 | | CO3 | 2 | 1 | 1 | 2 | 2 | . 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | | | 2 | 1 / 4 | 1 | - | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | | CO4 | 2 | 2 | 1 | I, | 2 | , 1 | 1 , | 2 | 2 | | 71 | | | - | - | _ | | CO5 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | | | | | - | 1 | 2 | 1 | 2 | 1. | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | | CO6 | 1 | 1 | 2 | I . | 2 | 1 | - | • | | | | | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated
Sh Ware Page # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC103 | | | | | | |-------------|--|---|---|---|---|---| | Course Name | : Molecular Biology, Evolution and Systematics | | | | | | | Semester | : Ist sem | | | | | | | | | L | T | P | C | 2 | | | | 3 | 0 | 0 | 3 | | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are - 1. To know about molecular biology. - 2. To understand the structure of DNA & RNA. - 3. To know about the origin of life. **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### **UNIT I** DNA replication. Genetic code. Transcription and translation in prokaryotes and eukaryotes. RNA processing. Mutations & DNA repair systems. Theories in support of DNA as a genetic material #### **UNIT II** The central Dogma of Molecular Biology. DNA: Structure and conformation, supercoiling, packing of DNA into chromosomes. Structural polymorphism of DNA & RNA. Threedimensional structure of t-RNA. ### **UNIT III** Concepts of organic evolution and evolutionary theories. Origin of life (including aspects of prebiotic environment and molecular evolution). Micro and macroevolution. Synthetic theory of evolution, Natural selection: Concept; Types of selection and selection coefficient. #### **UNIT IV** Role of mutation in evolution. Speciation: Isolating mechanisms; Modes of speciation (allopatric, sympatric, parapatric). Fossils and fossilization. Geological distribution of animal. Evolution of Horse and Man. #### **UNIT V** Introduction, scope and History of animal taxonomy. Species concepts (Typological, Nominalistic, Biological and Evolutionary). Linnean hierarchy. Zoological Nomenclature: ICZN; Taxon, Rank and Categories. Preparation of Keys, Techniques of museum preparation. # Reference Books: - 1. De Robertes & Robertis: Cell & Molecular Biology, 1987, Lee & Fabiger Philadelplna - 2. Friefelder: Molecular Biology (2nd ed.), 1996 Narosa Publ. House, - 3. Alberts et al: Molecular biology of the cell (4th ed.) 1994, Garland Publ. New York. - 4. Elliott & Elliott: Biochemistry and Molecular Biology, 1996, Oxford 5. Mayr: Animal species and Evolution Belknap Press, 1966. # M.Sc. ZOOLOGY SYLLABUS - 6. Strick Berger: Evolution, (Indian Edition). CBS Publ., 1994. 4. Richard Swann Lull: Organic Evolution Seema Publications, 1976 - 7. Simpson G.G.: Principles of Animal Taxonomy, Columbia Univ. Press, 1961. - 8. Mayr, E. Systematics and the Origin of Species, Columbia Univ. Press, 1942. - 9. Blackwelder RE: Guide to the Taxonomic Literature of Vertebrates, Iowa State Univ. Press, 1972. ### **Text Books:** - 1. Moody: Introduction to evolution (Indian Edition) Kalyani Publ., 1978. - 2. V.B.Rastogi; Organic Evolution, Kedar Nath Ram Nath Publication, Meerut. - 3. Molecular Biology, Kreuzer Helen Course Outcomes (COs): Upon successful completion of the course a student will be able to | CO1 | Remembering detailed and conceptual understanding of molecular processes, | |-----|---| | | evolution and systematics. | | CO2 | Understanding the various processes of molecular, evolution and systematics. | | CO3 | Demonstrate the evolution and evolutionary theories. Life at molecular level, | | | taxonomy and its principles | | CO4 | Compare and classify molecular theories, evolutionary outline & theories and | | | taxonomy. | | CO5 | Distinguish the role of mutation, Evolution and learn Geological time scale. | | C06 | To develop the Scope and history of animal taxonomy, molecular biology and | | | evolution. | | | | CO-PO Mapping | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |--------|-----|-----|-----|-----|------|-----|-----|-----|-----|------|------|------|------|------|------|------| | | | | | | 1, 1 | · | _ | - 1 | | | | | | | | | | CO1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2. | | CO2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | | CO3 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | | CO4 | 1 | 2 | 1 · | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | | CO5 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | | | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | | CO6 | 1 | • | | | | | | | | | | | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated Ke Horst Melans AL Page # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC104 | | - 1 | | | |-------------|---|------|--------|---------|-------| | Course Name | : Computer application, Biostatistics and Tools & | Tecl | ınique | s in Bi | ology | | Semester | : Ist sem | | | | | | | | L | T | P | C | | | , 0 4 | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are - 1. To know about working of computer. - 2. To understand the Biostatistics methods used in various fields. - 3. To know about tools & techniques in biological instruments. #### **Course Contents** No. of Credit- 03 Total No of class stipulated = 45Hrs #### UNIT I Introduction to computer: mini, micro, mainframe and super computers, Components of a computer system (CPU, I/O units), Data storage device, memory concepts. Types of software's, Computer application in biology and information communications. #### **UNIT II** Biostatistics: Importance of statistics in biological research. Calculation of mean, median, mode, range, variance, standard deviation. Concepts of co-efficient of variation, skewness & kurtosis. Simple correlation. Elementary idea of random variables. Students-t, chi-square and F- test of significance. Introduction to some distributions of random variables: Binomial, Poisson, normal. #### **UNIT III** Microscopy, principle & applications-Light microscope and phase contrast microscope, Fluorescence microscope, Electron microscope, General Principle and applications of, Colorimeter, Spectrophotometer, Flame photometer ### **UNIT IV** Separation techniques- Chromatography, principal type and applications. Electrophoresis, Principles, types and applications PAGE and Agarose gel electrophoresis. Principles of centrifugation, Ultra centrifuge. ### UNIT V Histological techniques: Principles of tissue fixation, Microtomy, Staining, Mounting. # Reference Books: - 1. Introduction to instrumental analysis-Robert Braun-McGraw Hill. - 2. Clark &Swizer. Experimental Biochemistry. Freeman, 2000. - 3. Robert Braun. Introduction to instrumental analysis. McGraw Hill - 4. Locquin and Langeron. Handbook of Microscopy. Butterwaths, 1983. - 5. Hoel, P.G.: Elementary Statistics. John Wiley & Sons, Inc. New York. # M.Sc. ZOOLOGY SYLLABUS - 6. Milton & Tsokos: Statistical Methods in Biological and Health Sciences, McGraw Hill, 1983. - 7. Zar JH: Biostatistical Analysis. Pearson. - 8. Casselman: Histochemical techniques, John Wiley, 1959. ### **Text Books:** - 1. Mahajan BK: Methods in Biostatistics, (4th ed.). Jaypee Bros. 1984. - 2. Sharma, V.K.: Techniques in Microscopy and Cell Biology Tata McGraw Hill, 1991. ### **Course Outcomes (COs):** Upon successful completion of the course, a student will be able to | CO1 | Identify the problem-solving methods, various tools & techniques, using knowledge of computer used in biological systems and research. | |-----|--| | CO2 | Discuss about the SOP of various instruments, analytical tools, and computer knowledge to solve various biostatistical problem. | | CO3 | Demonstrate the significance of hypothesis testing and inferential statistics by using instrumental techniques and computer. | | CO4 | Analyze the real-world problem using statistical tools and computer software, and reaching them to a solution. | | CO5 | Conclude the principle and applications of various instrumental techniques
like Microscopy, Colorimetry, Centrifuge, Chromatography, Spectrophotometer etc. | | CO6 | Formulate and devise a plan to Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics, computer Tools & Develop skill of solving biological problem using a combination of Biostatistics and the Biostati | **CO-PO** Mapping | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | roi | 102 | 103 | 101 | 100 | | | | | | | | | | | | | CO1 | 3 | 3 | 2 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | | CO2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | | CO3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | | CO4 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | | CO5 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | | C06 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | | COO | | _ | | | | | | | | | | | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated J. V. Hart Mar 1 Page # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL105 | | | | | |-------------|-------------------------------|--------------|---|---|---| | Course Name | : Lab Course I Based on MZOC1 | 01 & MZOC102 | | | | | Semester | : Ist sem | | | | | | | | L | T | P | C | | | | 0 | 0 | 4 | 4 | L - Lecture T - Tutorial P - Practical C - Credit ### Course contents - 1. Study of mutant phenotype of Drosophila by chart. - 2. Demonstration of law of segregation using Drosophila mutant. - 3. Study of law of independent assortment. - 4. Study of different cell organelles by chart/models. - 5. To study squash technique for the study of Mitosis/Meiosis. - 6. Identification of mitotic and meiotic stages from permanent slides. - 7. To solve the numerical problem related to Mendel's law. - 8. To study and classify representative animal specimen belonging to Protozoa to Helminthes with chart and available material. - 9. To study of biological diversity of local region. - 10. To study life cycle of various lower non-chordates by chart. - 11. To study of permanent slides of lower non-chordates. # Course Outcomes (COs): # Upon successful completion of the course a student will be able to | | 1.1.1. in functions | |-----|---| | CO1 | Observe the cell, cell organelles, and their functions. | | | t 1 af the cell cycle | | CO2 | Understand the various phases of the principle and laws of Mendelian /modern | | | Understand the various phases of the cen cycle. To explain and solve the problems related to the principle and laws of Mendelian /modern | | | genetics. To evaluate, identify and classification/taxonomic study of various specimens of lower non- | | CO4 | To evaluate, identity and classification/taxonomic study | | | chordates. Evaluate the various permanent slides of lower non-chordates and study of the life cycle of | | CO5 | Evaluate the various permanent situes of lower new energians | | | arious lower non-chordates | | | various former and of lower non chordate by chart. | | CO6 | To prepare the life cycle of lower non chordate by chart. | | | | # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL106 | | | | | |-------------|--|---|---|---|---| | Course Name | : Lab Course II Based on MZOC103 & MZOC104 | | | | | | Semester | : Ist sem | | | | | | | · · · · · · · · · · · · · · · · · · · | L | T | P | C | | | | 0 | 0 | 4 | 4 | L - Lecture T - Tutorial P - Practical C - Credit ### Course content - 1. Demonstration of DNA/RNA structure with the help of chart/model. - 2. To study the structure and types of DNA/RNA with the help of chat. - 3. To determine the molecular size of DNA. - 4. Demonstrate and discuss the computer and its accessories. - 5. Use of excel sheet for data processing. - 6. Nucleic acid and protein sequence database. - 7. Data mining for sequence analysis. - 8. To study normal human karyotype. - 9. To study chromosomal abnormalities. - 10. To study the various human pedigree. - 11. To solve numerical problems related to biostatistics. - 12. To study various instruments/tools in biological science. # Course Outcomes (COs): Upon successful completion of the course, a student will be able to | | Describe the DNA structure and its components, RNA and its types | |-----|---| | CO1 | Describe the DNA structure and its components, | | CO2 | Understand the DNA repair systems along with their diagram, Evolutionary theories, etc. | | | | | CO3 | Apply and discuss the computer and its accessories. | | | in the sign of their use in biology. | | CO4 | Categorize the various equipment and their are thoughtons in biological Sciences. | | CO5 | Evaluate the application of various statistical methods/tools in biological Sciences. | | C06 | Revise the study of various instruments/tools in biological science | | COO | Kevise are | # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC 201 | | | | k' | |-------------|----------------------------------|---|---|---|----| | Course Name | : Biotechnology and Microbiology | | | | | | Semester | : II nd Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit # **COURSE OBJECTIVES:** The objectives of this course are 1. To know about Biotechnology and Microbiology. 2. To understand how Biotechnological and Microbiological processes works for obtaining useful products. To understand the essentiality of Biotechnological and Microbiological products for human welfare. **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### **UNIT I** Biotechnology: History, definition & Scope. Genetic engineering concept, Molecular methods used in genetic Engineering. Introduction to Recombinant DNA technology and applications, cloning vector: Plasmids, Phages, cosmids #### **UNIT II** Gene therapy, DNA finger printing, transgenic animals and plants. Blotting techniques: Southern, Northern and Western blotting (Methodologies and applications), DNA-sequencing, Polymerase chain reaction. Human genome project and its applications. ### **UNIT III** Microbiology: Bacteria - classification, staining techniques, pathological significance. Physiology, genetics & reproduction of viruses of plants and animals, Bacteriophage, lysogenic & lytic cycle, Bacterial genetics. #### **UNIT IV** Microbial culture techniques & media enrichment techniques. Microbial fermentation: Microbes in decomposition and recycling processes. Microbes as pathological agents in plants, animals and man. #### **UNIT V** Laboratory facilities, Culture media for animal cell culture, Primary culture, cell lines and cloning, Tissue and organ culture, Transgection methods & transgenic animals. Molecular markers CRFLPs, RAPDs, Mini satellites, Microsatellites. Application of animal cell culture. # Reference Books: - Michael J. Pelezar, E.C.S. Chan, Noel R. Krieg: Microbiology (5th ed.) Tata McGrall-Hill, 2008. - 2. Alcamo's Jeffrey C. Pommerville: Fundamental of Microbiology (8th Ed.) Jones & Bartlet Publ 3. P.K. Gupta: Elements of Biotechnology, Rastogi and Co. Meerut, 1996 4. H.D. Kumar: - Modern Concepts of Biotechnology, Vikas Publ. Pvt. Ltd. # M.Sc. ZOOLOGY SYLLABUS - 4. Pommeruille Jeffery C, Microbiology, Fundamental of Microbiology - 5. Powar C B, Microbiology, General Microbiology. ### **Text Books:** - 1. Pelczar: Microbiology, Tata McGraw Hill,1993 - 2. Davis: Microbiology (3rd ed.) Harper & Row, Publ. Inc., 1980 - 3. Prescott, Harley & Kliens: Microbiology (7th ed.) McGraw-Hill International Edition, 2008. - 4. Mathews Bethany J. Encyclopedia of biotechnology Course Outcomes (COs): Upon successful completion of the course a student will be able | - pon out | decorate compression of the contract of co | |-----------
--| | CO1 | Remember all biotechnological and microbiological techniques in prospect of gene | | 2 | cloning, gene therapy, DNA fingerprinting, culture techniques and termentation. | | CO2 | To understand basic concept of Biotechnology, scope, and importance. | | CO3 | To apply gene cloning, blotting techniques, PCR, gene therapy, DNA fingerprinting, Transgenic plant and transgenic animals' techniques in various fields. | | CO4 | To analyze various microbial & biotechnological techniques, fermentation & | | C04 | processing | | CO5 | Compare and summarize culture techniques and gene cloning & microbial culture | | | technique application. | | C06 | To construct Microbial culture techniques & analyze the laboratory facilities used in | | | microbiology | | | | CO-PO Mapping | | | - P | <u> </u> | | | | | 200 | maa | DO10 | DO11 | DO12 | DCO1 | DCO2 | DCO3 | PS()4 | |--------|-----|-----|----------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|-------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | POIU | POII | PUIZ | PSOI | PSU2 | rsus | 150. | | | | | | | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO1 | 2 | 2 | 1 | 1 | 2 - | 2 | 1 | 2 | 2 | • | | | | | | | | | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO2 | 2 | 2 | 1 | 1 | _ | | - | _ | ^ | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | | 1 | 2 | | | | - | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO4 | 1 | 2 | 2 | 2 | 1 | | | | | • | • | _ | ^ | 1 | 1 | 2 | | CO5 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | | | COS | 4 | 1 | | | | _ | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | • | - | • | | | 20 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated JU ners " Mane 17 Page # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC 202 | | | | | |-------------|------------------------|---|---|---|---| | Course Name | : Higher Non-Chordata | | | | | | Semester | : II nd Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit ### **COURSE OBJECTIVES**: The objectives of this course are 1. To know about Higher Invertebrate animals. - 2. To understand how life evolved from simple to complex organization by division of labor. - 3. To understand adaptations of huge complex and diverse life forms. ### **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### UNIT -I Minor phyla: Organization and affinities if Rotifera, Entoprocta, Brachiopoda, Phoronida ### **UNIT-II** Annelida: Comparative Morphology of Various classes of Annelids, Coelom, Segmental Organs (Excretory organs), Adaptive radiation in polychaeta Arthropoda: Appendages and Mouth part in insects, larval forms and Parasitism in Crustacea, Affinities of Trilobita and Onchyophora, Arachnida ### **UNIT-IV** Mollusca: Comparative morphology of all classes, feature of respiratory and reproductive system, torsion and pearl formation. # UNIT- V Echinodermata: Larval forms of Echinodermata, water vascular system, Affinities of Echinodermata. # Reference Books: - 1. Parker TJ & Haswell WA: A Text book of Zoology Vol I & II, McMillan - 2. Hyman L: Invertebrate Series, Academic Press - 3. Starr et al: Biology, The Unity and Diversity of Life ### **Text Books:** 1. Kotpal R.L: Modern Text Book of zoology: Invertebrates. 2. Nigam: Biology of Non-Chordates, Nagin Chand, 1985. # M.Sc. ZOOLOGY SYLLABUS # Course outcomes (COs): Upon successful completion of the course a student will be able to | 7.011.01 | recessful com netion of the course a statement | |-----------------|--| | CO1 | Remember about animals, their behavior & significance. | | CO ₂ | To understand the organization and affinities minor Phyla. | | CO3 | Demonstrate the comparative morphology of various classes, coelom, excretory organ and | | | adantina nadiation in Dalvahaata | | CO4 | Analyze the Appendages, Mouthparts, larval forms and affinities of Arthropoda & other | | | laneum a Chilahan nan Chandata | | CO5 | Evaluate the comparative morphology, respiratory and reproductive system of Mollusca. | | CO6 | Compare the Larval forms and affinities of Echinodermata and Mollusca. | # **CO-PO** Mapping | Course PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 F | | | | | | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | | | | | - | | _ | | _ | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | | | - | 1 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | | | COZ | 1 | 2 | 1 | 2 | - | | - | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | | CO3 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | I | 2 | 1 | | | - | 2 | 1 | | | - | - | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | | CO4 | 1 | 2 | 1 | 2 | 2 | 1 | | | | _ | 2 | 2 | 2 | 1 | 2 | 2 | | CO5 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | - | ÷⊢ | | CO3 | 1 | 1 | | | - | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | | CO6 | 1 | 1 | 2 | 2 | I | 1, | 2 | 1 | * | | | | | | • | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated A~ de de Se Ver non day Wang # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC 203 | | | | | |-------------|------------------------|---|---|---|---| | Course Name | : Animal Physiology | | | | | | Semester | : II nd Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit # **COURSE OBJECTIVES:** The objectives of this course are 1. To know about physiology of animals. 2. To understand physiological processes (Digestion, Respiration, Excretion, Cardiovascular system, Nervous system) in animals. #### **Course Contents** No. of Credit- 03 Total No of class stipulated = 45Hrs #### UNIT I Physiology of digestion & absorption: Functional anatomy of the gastrointestinal tract. Secretions of the gastrointestinal tract. Liver and biliary system. Mechanism of Digestion and absorption of proteins, fats and carbohydrates. #### **UNIT II** Physiology of respiration: Exchange of respiratory gases at the pulmonary surface. Transport of respiratory gases by blood. Oxyhaemoglobin dissociation curve. Neural and chemical control of respiration. #### **UNIT III** Physiology of cardiovascular system: Characteristics of vertebrate cardiac muscle. Initiation, conduction and regulation of heart beat. ECG and myocardial infarction. Blood pressure and its regulation. Circulation (open and closed, blood composition and function). Blood groups. The cascade of biochemical reactions involved in coagulation of blood. #### UNIT-IV Physiology of excretion: Formation of urine: Functional anatomy of the kidney. Glomerular filtration and its control. Reabsorptions & secretions in the tubules. Counter current mechanism. Excretion and control of urea, sodium, potassium and other ions. Functions of aldosterone, antidiuretic hormone and renin-angiotensin system in renal physiology. #### UNIT V Nervous system: Functional differentiation of brain, Neuron - the basic functional unit. Ionic basis of resting and action potentials of neurons, Mechanism of synaptic transmission. Reflexes and types of reflexes. Neuromuscular physiology: Structural proteins of muscle cells, actin myosin complex and source of energy for contraction. Sliding filament theory of muscle contraction. Excitation-contraction coupling. Photochemistry of vision. Conduction of sound from tympanum to cochlea. Mechanism of thermoregulation in poikilotherms, homeotherms and heterotherms. Than 201Bage # M.Sc. ZOOLOGY SYLLABUS
Reference Books: 1. KV sastry: Animal physiology and biochemistry 2. Arora Mohan Prakash: Animal Physiology: Himalaya Publishing House. 3. Mishra Surya Prakash: Mammalian physiology: Kalyani Publishers ### **Text Books:** 1. HR Singh and Neeraj Kumar: Animal physiology and Biochemistry: Vishal Publishing House. Course Outcomes (COs): Upon successful completion of the course a student will be able to | Course | Outcomes (COs): Opon successful completion of the course a statem with a successful completion of the course a statem. | |--------|--| | CO1 | Identify the various organ system based on their characteristics and the mechanism of | | 1 | absorption in animal world. | | CO2 | Understand the functioning of various components of organ system found in animal world | | CO3 | To demonstrate the various aspects of the animal physiology, its Hormonal regulation & | | | their function's. | | CO4 | Analyze the animal's physiology of organ systems and their regulation. | | CO5 | Critique and conclude the morphological changes among the organs. | | C06 | Formulate and combine the modification within the organ system | | | | **CO-PO Mapping** | CO-1 | U III | appn | -6 | | | | | | | 2010 | DO11 | DO12 | | | 2 | DCO4 | |--------|-------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | POIU | POII | PO12 | PSO1 | PSO2 | PSO3 | P304 | 1.7 | | | | | | | | | | _ | _ | | _ | _ | | CO1 | 3 | 3 | 2 | 2 | 3 | 2 | 1 | 1 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 2 | | | _ | | | | _ | _ | | • | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | CO2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | | | | _ | _ | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | | CO3 | 3 | 3 | 2 | 3 | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 3 | 2 | 2 | 2 | | | | _ | 2 | 2 | 2 | 3 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | | CO4 | 3 | 3 | 2 | 2 | 3 | 2 | 1 | 1 | _ | | | | | | | | | 605 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO5 | 4 | 2 | 4 | 2 | _ | | | | _ | | | | | | | | | CO6 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO6 | اد | , | _ | - | | | | | | | | | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated De Ary de nos Mu Mon # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC 204 | | | | | |-------------|-------------------------|---|---|---|---| | Course Name | : Developmental Biology | | | | | | Semester | : II nd Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit # **COURSE OBJECTIVES:** The objectives of this course are - 1. To understand the fundamentals of Developmental Biology - 2. To understand detailed processes of Gametogenesis and fertilization, Early embryonic development, differentiation and Organogenesis. etc. in animals. - 3. To understand concept of embryonic induction and organizers. #### **Course Contents** No. of Credit- 03 Total No of class stipulated = 45Hrs #### **UNIT I** Gametogenesis: Spermatogenesis and Oogenesis including structure, differentiation and longevity of gametes. Chemical and metabolic events during gamete formation. Types of eggs. ### **UNIT II** Fertilization: Significance of fertilization, approximation of gametes, Capacitation, Acrosome reaction, formation of fertilization membrane, egg activation, Blockage to polyspermy, Parthenogenesis. Infertility. #### **UNIT III** Cleavage: Patterns, control of cleavage patterns, chemical changes during cleavage, totipotency. Blastulation and Gastrulation (in frog/chick). Fate maps, their formation and significance. Foetal membranes: Their formation and functions. #### **UNIT IV** Metamorphosis: As exhibited by an ascidian. Regeneration: Morphallaxis and Epimorphosis, Blastema and its significance, mechanisms as exhibited by invertebrates (Hydra and Planaria) and Vertebrates (Limb regeneration in Amphibia). ### UNIT V Placentation in mammals. Embryonic Induction: Origin, structure, and significance of primary organizer. Eye morphogenesis. # Reference books: Gilbert: Development Biology Sinauers Ass. Publ. Massachusetts. 1. Wolpert: Analysis of Biological development, Oxford. 2. Kolthoff, Analysis of Biological development, McGraw-Hill Science, New Delhi, India. 3. Balinsky: Introduction to Embryology Saunders co. Philadelphia and London. ### M.Sc. ZOOLOGY SYLLABUS 5. Berill: Development Biology Tata McGraw Hill. ### **Text Books** - 1. Shastry and Shukla: Developmental Biology: Rastogi Publication - 2. P.S Verma, VK Agarwal: Chordate Embryology: S Chand Publication - 3. Cell and Molecular Biology: N arumugham, Saras Publication. # Course Outcomes (COs): Upon successful completion of the course, a student will be able to | CO1 | Remember basic concepts of developmental biology and organogenesis. | |-----|---| | CO2 | To explain the basic concept of development and gamete formation. | | CO3 | To construct the various aspects concerning the early development. | | CO4 | Analyze the concept of cellular differentiation, organizer and embryonic inductions and eye | | | morphogenesis. | | CO5 | To conclude the various stages of development in the animals. | | | vertebrates and flies. | | CO6 | To develop the process of metaplasia, Trans differentiation and Metamorphosis. | **CO-PO** Mapping | Course | | PO2 | | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |--------|---|-----|---|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | CO1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO4 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO5 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO6 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated Jest . May Ven 23/12 M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL 205 | | | | | |-------------|---|-----|---|---|---| | Course Name | : Lab Course I Based on MZOC201 & MZOC2 | 202 | | | | | Semester | : IInd Sem | | | | | | | | L | T | P | C | | | | 0 | 0 | 4 | 4 | L - Lecture T - Tutorial P - Practical C - Credit # **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Biotechnological and Microbiological instrumentation - 2. To understand processes in Biotechnology and Microbiology - 3. To identify the diversity distribution and abundance of Higher invertebrates. ### **Course Contents** - 1. To study the Biotechnological instrumentation - 2. To study the Microbiological instrumentation - 3. To study the Isolation of DNA - 4. To prepare Media for cultural practices. - 5. To study Sterilization techniques. - 6. To study Staining techniques - 7. To study the permanent slides of higher non-Chordata. - 8. To study the Life cycle of higher non-Chordata by chart/ model ### Text books: - 1. P.S. Verma and VK Agarwal: Practical Manual of Invertebrate Zoology: S Chand Publication. - 2. P.K. Gupta: Elements of Biotechnology, Rastogi and Co. Meerut, 1996 Course Outcomes (COs): Upon successful completion of the course a student will be able to | Linon SUC | cessful completion of the detaining techniques | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | | 1 Ale verious micronial statility techniques. | |
| | | | | | | | CO1 | Remember the Colonial Surface Migrobial culture techniques & media enrichment | | | | | | | | | | CO1 Remember the Various Microbial culture techniques & media enrichment CO2 Understanding of the various Microbial culture techniques & media enrichment | | | | | | | | | | | techniques | | | | | | | | | | | | termiques DNA icolation | | | | | | | | | | CO3 | Carry out the DNA isolation. | | | | | | | | | | 000 | in the state of th | | | | | | | | | | | Collection/Demonstration, identification, and classification/taxonomic study of various | | | | | | | | | | CO4 | CIV. Learner abordates | | | | | | | | | | | specimens of Higher non-chordates. | | | | | | | | | | | To evaluate the nermanent slides of the Higher non-chordates. | | | | | | | | | | CO5 | 10 Evaluate the permitted of versions Higher non-chardates | | | | | | | | | | CO6 | Learn and study of the life cycle of various Higher non-chordates. | | | | | | | | | | C00 | N / | | | | | | | | | # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL 206 | | | | | | |-------------|------------------------|------------------------|-----|---|---|---| | Course Name | : Lab Course II | Based on MZOC203 & MZO | C20 | 4 | | | | Semester | : II nd Sem | | | | | | | | | | L | T | P | C | | | | | 0 | 0 | 4 | 4 | L - Lecture T - Tutorial P - Practical C - Credit # **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Serological and Biochemical tests - 2. To understand Toxicological effects - 3. To identify the developmental stages of the Chick embryo. #### **Course Content** - 1. Serological Tests (RBC, WBC, HBG, Clotting time of blood, etc.) - 2. Biochemical Tests (Carbohydrate, Protein, Fats, Lipids, etc.) - 3. Toxicological Tests - 4. To study the developmental stages & Comparison of Vertebrates - 5. To study the permanent slides of chicks, Amphibians, Mammals, etc. ### Course Outcomes (COs): Upon successful completion of the course a student will be able to | CO1 | Remember the various serological and biochemical tests. | |-----|---| | CO2 | Understand the various toxicological tests. | | CO3 | Illustrate the permanent slides/ whole mount of the various developmental stages of chicks, | | | Amphibians, Mammals, etc. | | CO4 | Analyze the various permanent slides/Mounts. | | CO5 | Evaluate the biochemical test. | | CO6 | Construct new toxicological techniques. | #### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC301 | | | | | |-------------|--------------------------------------|---|---|---|---| | Course Name | : Endocrinology and Animal Behaviour | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are - 1. To know about the endocrine gland. - 2. To understand the animal hormones. - 3. To understand animal behavior. **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### **UNIT I** Hormones and Physiological actions of the following endocrine glands in vertebrates: Pituitary, Thyroid, Parathyroid, Pancreas, Gastro-intestinal tract, Adrenal cortex and Medulla, Thymus & Pineal. #### UNIT II Elementary knowledge of Dwarfism, Gigantism, Acromegaly, Diabetes insipidus, Goitre, Cretinism, Myxoedema, Diabetes mellitus and Addison's disease. Biosynthesis and secretion of protein hormones. Biosynthesis of steroid hormones: Steroidogenesis, cellular sites of synthesis, and control of secretion. Biosynthesis and control of secretion of Catecholamines. Biosynthesis, control of secretion of amino acid derived hormones (Thyroid). Mechanism of action of hormones #### **UNIT IV** Patterns of behaviour: Stereotype innate behaviour: Kinases, Taxes and Reflexes. Concepts of (i) Fixed action patterns (ii) Sign or key stimulus or releasers and (iii) Innate releasing mechanism. Instinctive behaviour. Learned behaviour: Habituation, Conditioned reflexes, Selective learning, Insight learning, Imprinting, Song learning in birds. Hormonal control of Behaviour #### **UNIT V** Communication: Chemical, Visual, Auditory, Electric and tactile, Dance language of honeybees, Biological clocks. Bird migration with particular reference to the mechanisms of navigation. Introduction to Socio-biology: Social structure in primates. ### M.Sc. ZOOLOGY SYLLABUS # Reference Books: 1. Alcock: Animal behaviourSinaur Associates, Inc. 1989. 2. Goodenough et al.: Perspectives on animal behaviour. Wiley & SonsNew Youk. 1993. 3. Grier: Biology of animal behaviour, Mosby 1984. 4. Krebs & Davies: An introduction to behavioural ecology (3rd ed.) Blackwell 1993. 5. Mac E. Hadley: Endocrinology, Prentice-Hall International ed.1988/1992. 6. G J Goldsworthy et al: Endocrinology, Blackie, 1981. 7. Maurice Goodman: Basic and Medical Endocrinology, Raven Press. ### **Text Books:** 1. Reena Mathur: Animal behavior ### **Course Outcomes (COs):** Upon successful completion of the course a student will be able to | e pon outeeoor | at completion of the course a student will be able to | |----------------|---| | CO1 | Remember about hormones and their physiological actions and | | | Biosynthesis. Animal behaviour and communication. | | CO2 | Explain the concepts of endocrine systems, homeostasis and their | | | physiological actions of various hormones. | | CO3 | To show the metabolic pathways of hormones biosynthesis and mechanism | | | of actions. | | CO4 | Analyze the evolution and various patterns of the behavioural in animals. | | | Hormonal control of behaviour. | | CO5 | To evaluate the different modes of biological communication in animals. | | CO6 | Generate the knowledge about the hormonal and neural control of | | | behaviour. | CO-PO Mapping | | CO-1 | | | | | | | | | | | | | | | | | |---|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | 7 | CO1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | r | CO2 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | r | CO3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | r | CO4 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | t | CO5 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | r | CO6 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated # M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC302 | | | | | |-------------|-------------------------|----|---|---|---| | Course Name | : Chordata | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3. | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are - 1. To know about vertebrate animals. - 2. To understand how life evolved from simple to complex organization by division of labour. - 3. To understand adaptations of huge complex and diverse life forms. **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### UNIT I Salient features and outline classification (up to order) of various chordate groups as covered under respective taxonomic groups. Protochordate: Salient features of body organization and systematic position of Balanoglossus and Amphioxus as a type and its affinities. Agnatha: External features of Petromyzon. #### UNIT II Pisces: Scales and fins in fishes. Parental care in fishes. Fishes in relation to man. Amphibia: General characters and affinities of Gymnophiona. Parental care in Amphibia. #### UNIT III Reptilia: A brief knowledge of extinct reptiles. Poisonous and non- poisonous snakes. Poison apparatus of the snake. Snake venom and anti-venom. Adaptive radiation in reptiles. Adaptations of reptiles to desert life. ### **UNIT IV** Aves: Flightless birds and their distribution. Flight adaptations in birds. Migration in Birds, Modification of Beaks ### UNIT V Mammalia: General organization, distribution and affinities of Prototheria. Economic importance. Adaptive radiation with particular reference to aquatic mammals. # Reference Books: - 1. Barnes: Invertebrate Zoology (4th ed.), Holt-Saunders, 1980. - 2. Hickman, Roberts & Hickman: Integrated principles of Zoology (7th) ed Times- mirror, Mosby - 3. Kotpal R.L: Modern Textbook Of Zoology: Invertebrates. Rastogi - 4. Nigam: Biology of Non-Chordates, Nagin Chand. - 5. Parker TJ & Haswell WA: Textbook of zoology Vol I & II, Mcmillan. - 6. 6. Hyman L: Invertebrate Series, Academic Press - 7. Young JZ: The Life of Vertebrates, Oxford, 1950. # M.Sc. ZOOLOGY SYLLABUS ### **Text Books:** - 1. E.L.Jordan & P.S.Verma, Chordate Zoology. S.Chand & Company Ltd. 2001. - 2. R.L.Kotpal, A Text Book of Chordata. # Course Outcomes (COs): Upon successful completion of the course, a student will be able | CO1 | Demombra the head-second of the course, a student will be able | |-----------------|---| | COI | Remember the basic concepts of chordata, their organization, distribution and | | | adaptive radiation. | | CO ₂ | To discuss about classification, general organization, and affinities of Protochordata, | | | Amphioxus and Urochordata, Agnatha. Understand the origin, General organization | | | and affinities of Gymnophiona | | CO ₃ | To classify extinct reptiles & poisonous & non-poisonous snakes. Parental care in | | | Amphibia. | | CO4 | To examine the flightless birds & migration in birds, adaptation in various chordate | | | animals. | | CO5 | To evaluate the affinities, economic importance and adaptation from protochordates to | | | mammals. | | CO6 | To assemble the adaptive radiation in Pisces,
Reptiles, Aves and aquatic mammal. | | | | | | | CO-PO Manning | | Course PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4 | | | | | | | | | | | | | | | | |--------|---|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | | | | | | | _ | | | | | | | _ | | | _ | | CO1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO4 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO5 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO6 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE303 (Elective-I, Any one) | | | | | |-------------|---------------------------------|---|---|---|---| | Course Name | : General Ichthyology | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit <u>Course Objectives</u>: The objectives of this course are: - 1. To know about the evolution and phylogeny of fishes. - 2. To understand the physiology of the fishes. - 3. To know about the behaviour of the fishes. #### **UNIT I** Classification of Fishes, Systematic Position, Habit and Habitat, Morphology, Distribution, Significance and Affinities of Holocephali and Dipnoi. Fins, Their Origin and Evolution; Locomotion in Fishes. Histomorphology and Elementary Physiology (A) Digestive System (With Particular Reference to food And Feeding Habits of Freshwater Fishes) (B) Excretory System (With Particular Reference to Acid Base Balance and Osmoregulation.) (C) Respiration (Structure and function of gill). #### **UNIT II** Accessory respiratory Organs in Fishes. Integuments in fishes and coloration and its significance, mechanism of colour change, Swim bladder its types (Physostomous and Physoclistous type), Bioluminescence: Luminiscent organs, Mechanism of light emission Webberian ossicles: Working mechanism and functions. Exoskeleton: Structure and development of placoid and non placoid scales, Electric Organs in Fishes. ### **UNIT III** Brief Knowledge of Sexual Dimorphism, Courtship and Parental Care. Migratory Instincts, Hill Stream Adaptations. Reproduction in a Major Carps- Structureof Gonad, Spawning, Early Development and Metamorphosis. ### **UNIT IV** Microscopic Structure and Hormonal Functions of the Following Endocrine Glands: Pituitary, Thyroid, Pancreas, Adrenal, Corpuscles of Stannins, Ultimobranchial Glands, Caudal Neurosecretory System and Sex Hormones. ### M.Sc. ZOOLOGY SYLLABUS #### UNIT V Brief Knowledge of Sense Organs: Organs of Smell, Eyes, Hearing, Ampulla of Lorenzeni, Bio- Luminescence, Sound Production and Lateral Line System. Venomous and Non-Venomous Fishes. #### Reference Books - 1. C.B.L. Srivastava: Fish Biology, Narendra Publication House, 2008. - 2. Kyle: The Biology of Fishes, 2007. - 3. H.R. Singh: Advances in Fish Biology, Hindustan Publishing Corp., 1994. - 4. J.D. Munshi & J.S.D. Munsi: Fundamental of Freshwater Biology, Narendra Publ. House, 1995. - 5. Carlander: Handbook of Freshwater Fishery Biology, vol. 2, Iowa State Univ. Press, 1977. - 6. Pankaj Bahuguna and A. K. Dobriyal (2019). Biology of the ornamental fish Puntius conchonius (Ham. - Buch.). Narendra Publishing House, Delhi (India). ISBN: 978-9387590-46-5. ### **Text Books:** - 1. SS Khanna & H.R. Singh: Fish & Fisheries. - 2. Dr. J. Ojha: Biology of Hill Stream Fish, Narendra Publication House, 2002. ### Course Outcomes (COs): Upon successful completion of the course, a student will be able to | CO1 | Remember the phylogeny, physiology, metamorphosis, fishery resources and fish behaviour. | |-----|---| | CO2 | Understand the systematics, Phylogeny and general organization of fishes. | | CO3 | To compile the general organization and affinities of Agnatha, Holocephali and Dipnoi. | | CO4 | Explain the culture systems and comparative Morphology ,metamorphosis of Teleost and | | | Elasmobranchs. | | CO5 | To conclude the knowledge of physiology of alimentary canal electric organs and endocrine | | | glands in fishes. | | CO6 | To develop the knowledge of physiology of respiration, sense organs, parental care and | | | reproduction in fishes | | CO- | PO M | appu | ıg | | | | | | | | | 2010 | | | | DCOA | |--------|------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSU4 | | COI | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO2 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO4 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO5 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | C06 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlate Wany ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE304 (Elective-I, Any one) | | | | | |-------------|---------------------------------|------|---|---|---| | Course Name | : Entomology I |
 | | | | | Semester | : III rd sem |
 | | | | | | | L | T | P | С | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit <u>Course Objectives</u>: The objectives of this course are - 1. To know about the structure of insects. - 2. To understand the general characters of various orders of insects. - 3. To know about the behaviour of insects. #### **Course Contents** No. of Credits=03 Total No of class stipulated = 45 Hrs #### UNIT I Introduction to external morphology: body wall, segmentation. The head: structure of head; appendages, and antennae. The thorax: pro, meso and metathorax; legs. The wings: origin, structure and articulation. The abdomen: structure, appendages; external female and male genitalia. Classification of insect with special reference to that of different orders. General characters, habits, habitats, importance of the insect orders-Collembola, Protura, Diplura, Thysanura, Ephimerida, Placoptera, Odonata. ### **UNIT III** General characters, habits, habitats, importance of the insect orders-Embioptera, Orthoptera, Phasmida, Dermaptera, Blattaria, Menteodea, Isoptera, Zoraptera. #### **UNIT IV** General characters, habits, habitats, importance of the insect orders-Psocoptera, Thysanoptera, Heteroptera, Homoptera, Anoplura, Neuroptera, Megaloptera, Trichoptera. #### **UNIT V** General characters, habits, habitats, importance of the insect orders-Coleoptera, Strepsiptera, Hymenoptera, Lepidoptera, Diptera. ### Reference Books: - 1. Metcal& Flint: Des truction and useful Insects, Tata McGraw-Hill, 1979. - 2. Ayyar, TVR: Hand Book of Economic Entomology for South India, International Book & Periodical Supply Service, 1984. - 3. Fernald HT, HH Shepard: Applied Entomology, McGraw-Hill, 1955 - 4. Frost SW: Insect life and insect Natural History, Dover Publication, New Yark, 1959. - 5. Evans JW: Insect Pests and Their Control, Periodical Expert Book Agency, 1984 32 ### M.Sc. ZOOLOGY SYLLABUS # Text Books: 1. Pruthi HS: Text Book on Agricultural Entomology, ICAR Publication, 1969. 2. Ananthakrishnan TR: Applied Entomology. # Course Outcomes (COs): Upon successful completion of the course, a student will be able to | 00 | - student will be able to | |-----|---| | CO1 | Remember about the morphology & concepts of overview of all orders of Entomology | | CO2 | Understand the external morphology of insects (head, thorax, wings & abdomen) | | CO3 | To classify the insects Classification with special reference to that of different orders | | CO4 | To analyze the general characters, habits, habitats, importance of the insect orders
Embioptera, Orthoptera, Phasmida, Dermaptera, Blattaria, Menteodea, Isoptera, Zoraptera | | CO5 | To generate the general characters, habits, habitats, importance of the insect order Psocoptera, Thysanoptera, Heteroptera, Homoptera, Anoplura, Neuroptera, Megaloptera, Trichoptera and reproductive system | | CO6 | To evaluate the general characters, habits, habitats, importance of the insect orders-
Coleoptera, Strepsiptera, Hymenoptera, Lepidoptera, Diptera. | **CO-PO** Mapping | | Course PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO | | | | | | | | | | | | | | | | |--------|--|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | CO1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO4 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO5 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO6 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated 33 The plons # M.Sc. ZOOLOGY SYLLABUS | THE PERSON NAMED IN COLUMN TWO IS
NOT THE OWNER. | | CENTRAL SPACES | - | | | |--|---------------------------------|----------------|---|---|---| | Course code | : MZOE305 (Elective-I, Any one) | | | | | | Course Name | : Knylronmental Biology I | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L. - Lecture T - Tutorial P - Practical C - Credit <u>Course Objectives</u>: The objectives of this course are 1. To know about our environment and climate. - 2. To understand different biomes of India. - 3. To know about population cycle, bio-assimilation and bioaccumulation. #### **Course Contents** No. of Credits=03 Total No of class stipulated = 45Hrs #### UNIT I Introduction to Environmental biology, its multidisciplinary nature and scope. Components of Environment: atmosphere, lithosphere & hydrosphere. Climate (micro, regional and global); Hydrological cycle; Soil profile. Changing interactions between man and environment (cultural, political, ecological). #### UNIT II Terrestrial biomes of the world their characteristics and major biota (Grassland, Desert, Forest, Tundra). Aquatic biomes (lotic, lentic, marine, estuaries, coral reef), their status. Wetlands of India. Environmental adaptations: Aquatic, Aerial, Desert, Arboreal, Fossorial, Defensive. #### Unit III Island biogeography theory. Habitat fragmentation, Habitat selection, Corridors, Community patterns (gradients and Continuum), Community indices. Ecological niche. ### **UNIT-IV** Population cycles and fluctuations; Dispersal. Intra & inter specific relationship. Models of succession; Pioneer & climax concept. #### UNIT - V Concept of biological indicators; biological monitoring; Indicator organisms. Invasive species and its impact. Biological control: Biomagnification, Bioassimilation & Bioaccumulation. Xenobiotics: Carcinogenic (heavy metals, pesticides). ### Reference Books: 1. Odum: Fundamentals of Ecology (Saunders, 1971) 2. Turk and Turk :Environmental Science (4th ed. Saunders, 1993) 3. Primark: A Primer of Conservation Biology (2nd ed. Sinauer Associates) 4. Calabrese: Pollutants and High-Risk Groups (John Wiley, 1978) 5, Raven, Berg, Johnson: Environment (Saunders College Publishing, 1993) Text Books: 34 Many ### M.Sc. ZOOLOGY SYLLABUS 1. Sharma: Ecology and Environment (Rastogi Publication, 7th ed. 2000) 2. Odum: Basic Ecology (Saunders, 1985) # Course Outcomes (COs): Upon successful completion of the course a student will be able to | CO1 | Understand the concept of environmental biology, its multidisciplinary nature, scope, and its | |-----|---| | | components. | | CO2 | Knowledge about the terrestrial biomes of the world their characteristics and major biota | | CO3 | Collect knowledge about environmental biology, Island biogeography, population cycle and | | | biological control. | | CO4 | Analyze the Population cycles and fluctuations. Succession model, Pioneer & climax concept. | | CO5 | Evaluate the concept of biological indicators, community pattern & ecological Niche. | | CO6 | Develop the techniques of biological control. | **CO-PO Mapping** | Course | PO1 | PO2 | | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | |--------|-----|-----|---|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | CO1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 . | 2 | 3 | 2 | | CO2 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 . | 2 | 2 | 3 | 2 | | CO4 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO5 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO6 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated Harly \(\int_{35}^{35}\) Mar ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE306 (Elective-II, Any one) | | | | | |-------------|----------------------------------|---|---|---|---| | Course Name | : Applied Ichthyology | | | | | | Semester | : III rd sem | | | | | | | ` | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit <u>Course Objectives</u>: The objectives of this course are - 1. To know the cultivable fishes. - 2. To understand the various economic important group of fishes. - 3. To know the various fishery practices. - 4. To know fish farm management and disease identification in fishes . #### **Course Content** No. of Credits =03 Total No of class stipulated 45 Hrs #### UNIT I General Survey of the Marine, Estuarine, and Inland Capture Fisheries of India with Particular Reference to Fishery Resources of Uttarakhand, Important cultivable fresh water species of Uttarakhand, Shellfishes. Biology of Cultivated Fish and Shellfish. Methods of Fishing: Fishing Gears and Crafts. Sewage-Fed Fishery and Shellfish Fishery #### **UNIT II** Carp Culture: Monoculture, Poly Culture and Composite Fish Culture. Live Fish Culture. ManagementPractices: Weed, Insect and Carnivorous Fishes Food and their classification and feed formulation: Natural Food and Artificial Feed and their Role in Fish Culture, Fishponds and their types, dry bundh and wet bundhs. Ecology and Productivity of Fish Ponds, Pollution in Relation to Fisheries. ### **UNIT III** Setting and maintenance of an Aquarium., Important Ornamental fishes and their characteristics, Larvivorous Fishes and Public Health. Fish Diseases and their Management, Exotic Fishes and Their Merits and Demerits, Cryopreservation of Gametes and Embryos. ### **UNIT-IV** Aquaculture in World and Aquaculture in India Integrated Aquaculture: Fish-Cum Poultry, Fish-Cum Piggery, Paddy-Cum Fish Culture and Dairy-Cum Fish Culture. Construction and maintenance of fish farm Transportation of fishes: live fish transport. Than Id Mark ## M.Sc. ZOOLOGY SYLLABUS ## **UNIT V** Maturation and Fecundity, Spawning and Seed Collection, Induced Breeding and Hybridization. Factors Responsive for Induced Breeding, Hypophysation. Use of Different Synthetic and Natural Hormones. Hatching Techniques and Hatcheries, Nursery Management, ## Reference Books - 1. C.B.L. Srivastava: Fish Biology, Narendra Publication House, 2008. - 2. Kyle: The Biology of Fishes, 2007. - 3. H.R. Singh: Advances in Fish Biology, Hindustan Publishing Corp., 1994. - 4. J.D. Munshi & J.S.D. Munsi: Fundamental of Freshwater Biology, Narendra Publ. House, 1995. - 5. Carlander: Handbook of Freshwater Fishery Biology, vol. 2, Iowa State Univ. Press, 1977. - 6. Pankaj Bahuguna and A. K. Dobriyal (2019). Biology of the ornamental fish Puntius conchonius (Ham. Buch.). Narendra Publishing House, Delhi (India). ISBN: 978-9387590-46-5. #### **Text Books:** - 1. Dr. J. Ojha: Biology of Hill Stream Fish, Narendra Publication House, 2002. - 2. SS Khanna & H.R. Singh: Fish & Fisheries ## Course Outcomes (COs): Upon successful completion of the course, a student will be able to | Opon se | iccessia. compress | |---------|---| | CO1 | Remember about fish culture systems, Aquaculture system, | | CO2 | Understand the crafts and gear used in fish catching, and Transportation of fishes | | | Illustrate the knowledge about the different group of fishes (larvivorous, Ornamental, Exotic | | CO3 | | | | fishes etc.) food and its types. | | CO4 | Analyze the Fish disease, fish pond types etc. and Induced Breeding and Hybridization. | | CO5 | Summarize the knowledge about Integrated fish farming types | | | To assemble construction and maintenance of fish farm. | | CO6 | To assemble construction and maintenance of rish rarm. | CO PO Mapping | CO-1 | LA INI | appn | B | | | 504 | D05 | DOG | DOO | DO10 | DO11 | PO12 | nco1 | DCO2 | DCO2 | PSO4 | |------|---------------------------------|------|-----|----------|-----|-----|-----|-----|-----|------|------|------|------|------|------------|------| | CO-I | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PU8 | PU9 | POIU | ron | 1012 | PS01 | PSU2 | PSU3 | 1304 | | | _ | | 1 | 2 | 1 | - | 1 | 2 | 1 | 2 | 2 | 2 | 1 | - | 2 | 1 | | CO1 | 2 | - | 1 | 2 | - | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | - | | _ | | 2 | 1 | - | | | - | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | | CO3 | 1 | | - | <u>-</u> | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | | CO4 | 1 | 3 | 1 | 2 | 2 | 1 | | 2 | | | • | • | 4 | | 1 | 1 | | | $\stackrel{\cdot}{\rightarrow}$ | 1 | | 2 | 2 | - | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | - 0 | 2 | | CO5 | 2 | 1 | - | - | - | | - | 1 | 1 | 2 | 2 | | | 2 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 1 | - | 2 | | - | | | - | • | 4 | 1 | 4 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated Jan Sig. mas who rum ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE307 (Elective-II, Any one) | | | | | |-------------|----------------------------------|---|---|---|---| | Course Name | : Entomology II | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit **Course Objectives**: The objectives of this course are - 1. To know about the physiology of Insects. - 2. To understand the process of metamorphosis in insects. - 3. To know the effect of abiotic factors on insects. #### **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### **UNIT I** Digestive system: structure, physiology of digestion and absorption of different types of food. Structure of circulatory system: haemolymph its composition and function. Physiology of respiration; the tracheal system, spiracles, respiration in aquatic insects. Nervous system: structural basis, Excretion: structure and physiology of malpighian tubules and its secondary functions. Reproduction: male and female
gonads. #### **UNIT II** Structure of compound eye, mosaic vision. Production and reception of sound. Light producing organs. Hormones: neurosecretion and co-ordination, Metamorphosis: types, hormonal control of metamorphosis, Pheromones. #### UNIT III Structure of the insect egg, maturation, cleavage, formation of blastoderm, gastrulation, blastokinesis, germ layers, Various types of larvae and pupae, moulting, diapauses, Oviparity, viviparity, ovo-viviparity in insects. #### **UNIT IV** Abiotic factors: effect of temperature, light and humidity on growth of insect population; biotic potential, Malthusian principle and dynamics of population fluctuation, hibernation, aestivation. ### **UNIT V** Biotic factors: parasitism, predation and social life in insects, phase theory of locust, parental care. ## Reference Books: - 1. Metcal & Flint: Destruction and useful Insects, Tata McGraw-Hill, 1979. - 2. Ayyar, TVR: Hand Book of Economic Entomology for South India, International Book Supply Service, 1984. 3. Fernald HT, HH Shepard: Applied Entomology, McGraw-Hill, 1955 4. Frost SW: Insect life and insect Natural History, Dover Publication, New Yark, 1959. 5. Evans JW: Insect Pests and Their Control, Periodical Expert Book Agency, 1984. Text Books 3 Q When When & Periodical ## M.Sc. ZOOLOGY SYLLABUS 1. Pruthi HS: Text Book on Agricultural Entomology, ICAR Publication, 1969. 2. Anantha krishnan TR: Applied Entomology Course Outcomes (COs): Upon successful completion of the course, a student will be able to | | was decessful completion of the course, a student will be able to | |-----------------|--| | CO1 | Remember insects' physiology, growth, development and behaviour, metamorphosis and | | | hormonal control. Hibernation & aestivation, | | CO ₂ | Understand the circulatory, respiratory & sound and light producing organs | | CO3 | Explain the digestive, excretory and reproductive system of insects. | | CO4 | | | | & development of insects. | | CO5 | Evaluate the knowledge of about physiology of insects, Pheromones and hormones & | | | environmental factors | | CO6 | To develop the role of abiotic and biotic factors on the population and growth, social behaviour | | 1 | of the insects. | CO-PO Mapping | CO- | PO M | appın | g | | | | | | | | 2011 | DO12 | 2221 | PSO2 | nco3 | PSO4 | |--------|------|-------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | POH | POIZ | PSOI | PSU2 | rsus | 150. | | 002100 | _ | | | | 2 | 2 | 1 | 2 | 1 | 1 | 2 | | CO1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | • | | | | | - | | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | | CO2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | _ | | | | | 1 | 2 | | CO3 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | | COS | 1 | 2 | 1 | | | | | | , | 2 | 1 | 1 | 2 | 1 | 1 | 1 | | CO4 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | • | | | | - | _ | | | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | | CO5 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | _ | | | | | | , | | 226 | , | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | | CO6 | 1 | 1 | 4 | - | ~ | - | _ | | | | | | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated 39 non who pelane ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE308 (Elective-II, Any one) | | | | | |-------------|----------------------------------|---|---|---|---| | Course Name | : Environment Biology II | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit Course Objectives: The objectives of this course are - 1. To know about natural resources, biodiversity and its conservation. - 2. To understand the problem related to environment like pollution etc. - 3. To know about the protected areas like National parks, Sanctuary and Biosphere. ## **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### **UNIT I** Natural Resources: Management & conservation; Renewable & non-renewable resources; Concept and currencies of Sustainable development. Biodiversity & its conservation. Environment Protection laws. Earth Summit, Rio+20. #### **UNIT II** Concept of Protected areas: Sanctuary, National Parks & Biosphere Reserves. IUCN. Categories, Biodiversity hot spots, conventions on biodiversity. #### **UNIT III** International efforts in biodiversity conservation (UNFP, IUCN, WWF); CITES; UNESCO's World heritage mission; Convention on Biological Diversity (CBD). ### **UNIT IV** Global Environmental Problems: Climate change, Greenhouse effect; Acid rain; Ozone layer depletion; Deforestation; Desertification; Marine pollution; Urbanization. ### **UNIT V** Environmental Problems/Hazards in Hills: Earthquake; Landslide; Soil erosion; Sedimentation; Cloud burst; Flash floods; Glacial retreat. Application of Remote sensing & Geographical Information Systems (GIS) in environment management. ## Reference Books - Odum: Fundamentals of Ecology (Saunders, 1971) 1. - Turk and Turk: Environmental Science (4rth ed. Saunders, 1993) 2. - Primark: A Primer of Conservation Biology (2nd ed. Sinauer Associates) 3. - Calabrese: Pollutants and High-Risk Groups (John Wiley, 1978) 4. - Raven, Berg, Johnson: Environment (Saunders College Publishing, 1993) 5. ## Text Books: - 1. Odum : Basic Ecology (Saunders, 1985) - 2. Sharma: Ecology and Environment (Rastogi Publication, 7th ed. 2000) ## M.Sc. ZOOLOGY SYLLABUS Course Outcomes (COs): Upon successful completion of the course a student will be able | | to the course a student will be unte | |-----------------|---| | CO1 | To Remember about natural resources, biodiversity and environmental problems | | CO ₂ | Understand the Natural resources, their management & conservation | | CO3 | Demonstrate the concept of protected areas, Biodiversity hot spots, and conventions on | | | biodiversity. | | CO4 | Analyze the International efforts in biodiversity conservation, deforestation, climate change and | | | pollution. | | CO5 | To evaluate the Global Environmental Problems | | CO6 | To manage the Environmental Problems/Hazards in Hills | | | To manage the Environmental Proteins, Table 2 | **CO-PO** Mapping | Course PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO | | | | | | | | | | 5002 | DCO4 | | | | | | |--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PS03 | 1304 | | CO1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO4 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO5 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated de John 41 was Who When ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL309 | | | | | -1 | |-------------------------|--|---|---|---|---|----| | Course Name
Semester | : Lab Course I Based on MZOC301 & 302
: III rd sem | | | | | | | | | L | T | P | C | | | | | 0 | 0 | 4 | 4 | | L - Lecture T - Tutorial P - Practical C - Credit ## **List of Practicals:** No. of Credits=4 - 1. To identify different endocrine glands with the help of charts. - 2. To study the histology of endocrine glands of animals with the help of slides. - 3. To determine the concentration of glucose in the diabetic samples. - 4. Isolation of hormones from different endocrine glands. - 5. To study and classify specimens up to various phyla of chordates with the help of charts. - 6. Museum specimens and slides: - 7. Protochordates - 8. Fishes - 9. Amphibians - 10. Reptiles - 11. Birds - 12. Mammals - 13. To prepare the taxonomic key based on given characteristics. - 14. To identify bones of the chordates ### Course Outcomes; | CO1 | Observe the localization of different endocrine glands in the animals including humans. | |-----|--| | CO2 | Discover various diseases caused by the malfunctioning of different endocrine glands in | | | human beings. | | CO3 | Examine the various permanent slides of different tissues/organs of the Chordates. | | CO4 | Conclude the identification, and classification/taxonomic study of various specimens/Bones | | | of the Chordates. | | CO5 | Exercises/Case study based on animal behavior or /field Visits. | | CO6 | Construct and study of permanent slides of the different body parts of the animals. | All Joseph 1 No. may her well ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL310 | | | | | |-------------|--|---|---|---|---| | Course Name | : Lab Course II Based on MZOE303 & 306 | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | i | | 0 | 0 | 4 | 4 | L - Lecture T - Tutorial P - Practical C - Credit ## List of Practical's: No. of Credits=4 - 1. To study the specimens of fishes for classification and general studies. - 2. To study the permanent slides of fishes for histological studies. - 3. To study of feeding habits of fishes by gut content analysis. - 4. Aquarium design and maintenance. - 5. Estimation of ovarian egg counts. - 6. Estimation of hydrological parameters- temperature, pH, conductivity, salinity, dissolved
oxygen, COD of nursery, rearing, stocking and breeding points. - 7. Demonstration of breeding pools and hatcheries. - 8. Induced breeding of Indian major carps and catfishes. - 9. Identification of eggs, spawn, fry, and fingerlings of cultivable fishes of India. - 10. Visit to freshwater/marine fish farm. | CO1 | Remember Identification, Collection, classification and preparation of a systematic record | |-----|--| | | of freshwater Ichthyofauna. | | CO2 | Understand classification, and general study of the various specimens of Agnatha, | | | Chondrichthyes, Osteichthyes, etc. | | CO3 | To demonstrate the different types of scales, Vertebrae, Girdles, Opercular bones, | | | Pharyngeal bones, etc. in fishes. | | CO4 | Analyze the various permanent slides of different tissues/organs/ developmental stages, etc. | | | in fishes. | | CO5 | Evaluate the various accessory respiratory organs/ Weberian ossicle, Electric organs, etc.in | | | fishes. | | CO6 | To construct the diversity and distribution, Behavioral aspects, and economic importance of | | | freshwater Ichthyofauna thorough field trips/case study/experimental setup, etc. | | | | ole V 43 43 Mars Wh ## M.Sc. ZOOLOGY SYLLABUS | Course code Course Name Semester | : MZOL310
: Lab Course II
: III rd sem | Based on MZOE 304& 307 | | | | | |----------------------------------|---|------------------------|---|---|---|---| | | | | L | T | P | C | | I I and | | | 0 | 0 | 4 | 4 | ## L - Lecture T - Tutorial P - Practical C - Credit ## List of Practical's: No. of Credits-04 - 1. Collection, preservation and identification of insects. - 2. To study the permanent slides of different parts of insects. - 3. To identify the insects up to class. - 4. Mounting and display of mouthparts of honey bee, butterfly and mosquito. - 5. Wings and their venation. Different types of antennae and legs of insects. - 6. Collection of various types of social insects. - 7. Dissection of alimentary canal of honey bee, butterfly and grasshopper. - 8. Filter chamber of Homopteran; salivary glands of mosquito and honeybee. - 9. Circulation; haemocyte count. - 10. Nervous system; dissection of butterfly, honey bee, and grasshopper. - 11. Study of life history of arthropods, dipteran, anoplura, siphonoptera. - 12. Field visit. | CO1 | Collection, identification, classification and preservation of different class of insects. | |-----|--| | CO2 | Identification, classification, and general study of the various specimens of insects. | | CO3 | Compile different types of wings, legs, stings, mouthparts etc. in insects. | | CO4 | To examine various permanent slides of different organs and developmental stages, etc. in | | | insects. | | CO5 | To evaluate the life history of various insects. | | CO6 | To assemble the diversity and distribution, behavioral aspects, and economic importance of | | | insects through field trips/case study/experimental setup, etc. | ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL310 | | | | | | |-------------|-------------------------|-------------------------|---|---|---|---| | Course Name | : Lab Course II | Based on MZOE 305 & 308 | | | | | | Semester | : III rd sem | | | | | | | | | | L | T | P | C | | | | | 0 | 0 | 4 | 4 | ## L - Lecture T - Tutorial P - Practical C - Credit ### List of Practical's: No. of Credits-04 1. To determine the Density, distribution of the given sites. - 2. To study the Important National parks, wildlife Sanctuaries, Biosphere reserves of India & Uttarakhand - 3. To study the Aquatic biomes. - 4. To study the different components of an Environment. - 5. To study soil profile & different soil types of India. - 6. To study the biological indicators. - 7. To study the seismic zones of India - 8. Preparation of an Inventory of IUCN categories of animal and plant species of any National park - 9. To estimate the pH, temperature, and electrical conductivity in a given soil/water sample - 10. To study the pollution and its types. | CO1 | Remember about basics of environment. | |------|--| | COI | Remember about busies of the state st | | CO2 | Understand the techniques importance in experimentation. | | CO3 | Illustrate the knowledge about the various environmental parameters. | | CO4 | Analyze the Biodiversity & pollution levels in various ecosystems | | C05 | Evaluate the various characteristics of soil and water (pH, temperature, and electrical | | -201 | Create and develop the diversity and distribution behavioral aspects and economic | | C06 | importance of environment through field trips/case study/ experimental setup etc | ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOS311 (Self-study, any one) | | | | | |-------------|---------------------------------|---|---|---|---| | Course Name | : Aquatic Biodiversity | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit <u>Course Objectives</u>: The objectives of this course are - 1. To know about aquatic biodiversity of animals and its conservation. - 2. To understand about endemic species. - 3. To know the impact of different hydroelectric project. #### **Course Contents** No. of Credits 03 Total No of class stipulated 45 Hrs ## UNIT I Biodiversity: Definition, Concept, Scope and measurement of biodiversity. Types of Biodiversity: Species, Genetic, Community, Ecosystem. Factors governing biodiversity: Historical & Proximate Endemic species: Definition, Concept, Scope, Hot spots ### **UNIT II** Types of aquatic ecosystem & biomes and their characteristics. Freshwater biodiversity. Marine biodiversity databases of CMFRI, CIFRI, NBFGR. ### UNIT III Threats to habitats and biological diversity in Freshwater and marine ecosystems. Endangered species: Definition, Concept, Scope. Conservation; Definition, Concept, Scope. Physical and chemical characteristics of freshwater rivers, lakes, reservoirs and wetlands. Over view of freshwater biodiversity in important Rivers, Lakes Reservoirs and Wetlands of India with emphasis on Himalaya. ## **UNIT IV** Impact of Hydroelectric Projects (HEP) on aquatic biodiversity. Environmental Impact Assessment (EIA): Case studies. Environmental flows: Importance for the aquatic flora & fauna. Environmental flows assessment methodology: Hydrological, hydraulics rating, habitat simulation & holistic. ## Reference Books: - 1. KJ Gaston & JI Spicer: Biodiversity: An Introduction - 2. WT Edmondson: Freshwater Biology - 3. HBN Hynes: Freshwater Ecology - 4. WK Dodds: Freshwater Ecology 5. Rivers for Life: Managing water for people and nature, Sandra Postel, Brain D. Richter. Text Books: 1. VG Jhingran: Fish & Fisheries of India 2. EP Odum: Ecology in mar peran ## M.Sc. ZOOLOGY SYLLABUS # Course Outcomes (COs): Upon successful completion of the course a student will be able to | CO ₁ | D | |-----------------
---| | | Remember scope, concept of aquatic biodiversity and aquatic ecosystem and reservoirs. | | CO ₂ | Understand Biodinamics L. C. Little Control of the August Control of the | | CO ₃ | Understand Biodiversity definition, species concept, community & environmental projects. | | CO3 | Apply Biodiversity scope and endemic species, hydrological projects. | | CO4 | A 1 | | C04 | Analyze the type of ecosystem, biomes and their characteristics | | | | | CO5 | Evaluate the threats to habitats and biological diversity in Freshwater and marine ecosystems | | | | | CO6 | Formulate the impact of Impact of Hydroelectric Projects (HEP) on aquatic biodiversity, EIA, | | 1 | Environment 1 | | | Environmental flaws. | **CO-PO Mapping** | | | 700 | | | | | | | | | | | | | | | |--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | POI | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | CO1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | | CO3 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | | CO4 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | | CO5 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | | CO6 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOS312 (Self-study, any one) | | | | | |--------------|-----------------------------------|---|---|---|---| | Course Name | : Economic Zoology & Parasitology | | | | | | Semester | : III rd sem | | | | | | | | L | T | P | C | | I active III | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit # Course Objectives: The objectives of this course are - 1. To know about apiculture, sericulture and lac culture. - 2. To know about parasites and their causing diseases. - 3. To understand the process of integrated pest management. ## **Course Contents** No. of Credits 03 Total No of class stipulated 45 Hrs #### **UNIT I** Elementary knowledge of sericulture, Life cycle of Silk worm, Apiculture, Life cycle of Honey bee, Honey bee culture and tool used in honey bee culture, lac culture. #### IINIT II Fish culture System in India, Major Fresh water Fishes, Poultry keeping. Elementary knowledge of Animal Husbandry. Integrated Pest Management (IPM). ## **Parasitology** ### **UNIT III** Parasitism and evolution of parasitism. Protozoan parasites: Biology, life cycle and diseases caused by selected pathogenic protozoans of man their preventive and control measures (*Entamoeba histolytica*, *Trypanosomes*, *Leishmania donovani*, *Trichomonas vaginalis*, *Giardia intestinalis* & *Plasmodium*). #### **UNIT IV** Parasitic adaptations in Platyhelminthes and Aschelminthes. Common trematode, cestode and nematode parasites. Biology, life history and preventive measures of economically important helminth parasites of man and domesticated animals (Ascaris, Schistosoma, Fasciola, Wuchereria) Taenia. Introduction to arthropods and vectors of human diseases (mosquitoes, lice, flies & ticks). Parasitism in Crustacea. ## Reference Books: - 1. A general text book of entomology, Imms, A.D., Champman & Hall, UK 2. Sobti, R.C.: Medical Zoology. Sobhan Lal Nagin Chand & Co. Jallendhar. - 3. Kotpal, Agrawal &Khetrapal: Modern Text-book of Zoology, Invertebrates. Rastogi, 1976. - 4. Foundation of Parasitology, Roberts L.S. and Janovy j., McGraw-Hill Publishers, New York, USA. ## Text Book 1. Shukla, G.S. & Upadhyay, V.B.: Economic Zoology. 4th Ed. 2005-06. Rastogi Publ., Meetus 2. Modern Parasitology; A Text book of Parasitology, FEG Cox., Willey-Blackwell, U.J. Course Outcomes (COs) _48 War ## M.Sc. ZOOLOGY SYLLABUS Upon successful completion of the course a student will be able to | COL | Down to the course a student will be able to | |-----------------|---| | -01 | Remember about culture techniques, animal husbandry, IPM, parasitic protozogas and | | | Remember about culture techniques, animal husbandry, IPM, parasitic protozoans and helminthes. | | CO ₂ | | | | To understand the behaviour of fishes, insects and other parasitic protozoans and helminthes. | | CO3 | To analyze about the socioulture and the | | | To analyze about the sericulture and life cycle of silk worm, Apiculture and fish culture system in | | 1 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | India | | CO4 | Analyzing noultry leave a small | | | Thirty Eng pounty keeping & IPM | | CO5 | Evaluate parasitism and evolution of parasitism, protozoan parasite. | | CO6 | Generate the Image I. | | -300 | Generate the knowledge about parasitic adaptation in Platyhelminthes and Aschelminthes. | **CO-PO Mapping** | Course | PO1 | PO | DO2 | DO 4 | 20.5 | | | | | | | | | | | | |--------|-----|-----|-----|------|------|-----|-----|-----|-----|------|------|------|------|------|------|---------------| | Course | 101 | 102 | POS | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | CO1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | CO2 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO4 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | | CO5 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | | CO6 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 3 | $\frac{2}{2}$ | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated all your 49 nos Wh ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOS313 (Self-study, any one) | | | | | |------------------|---------------------------------|---|---|---|---| | Course Name | : IPR, Patenting and Bioethics | | | | | | Semester /Year | : III | | | | | | | | L | T | P | C | | I Laster The man | | 4 | 0 | 0 | 4 | L - Lecture T - Tutorial P - Practical C - Credit # Course Objectives: The objectives of this course are No. of Credits=3 - 1. To acquire sound knowledge of IPR, Patenting & Bioethics. - 2. To study the structure, format and applications of bioethics. Social and ethical issues in Biology. - 3. To comprehend concepts and issues of Intellectual property rights and assess the application of it in licensing of bio-product, marketing of biological inventions along with associated trade regulations. - 4. To compare and contrast types of patents, treaties, amendments, drafting patent applications along with aspects of international patenting. - 5. To study social and ethical issues in biology. ### **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs ### Unit 1 Introduction to Intellectual Property: Types of IP: Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of GMOs. ### Unit 2 Agreements and Treaties: History of GATT & TRIPS Agreement; Madrid Agreement; Hague Agreement; WIPO Treaties; Budapest Treaty; PCT; Indian Patent Act 1970 & recent amendments. #### Unit 3 Patents: Basics of Patents and Concept of Prior Art. Introduction to Patents: Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; Specifications: Provisional and complete; Forms and fees Invention in context of "prior art"; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, esp@cenet (EPO), PATENTScope (WIPO), IPO, etc.). ## Unit 4 Patent filing procedures: National & PCT filing procedure; Period and cost; Status of the patent applications filed; Precautions while patenting—disclosure/non-disclosure; Financial assistance for patenting—introduction to existing
schemes. Patent licensing and agreement. Patent infringement-meaning, scope, litigation, case studies #### Unit 5 Introduction to Bioethics. Social and ethical issues in Biology, causes of unethical acts, ignorance of laws, codes, policies, and Procedures, recognition, friendship, and personal gains. Professional ethics - professional conduct, Ethical decision-making, ethical dilemmas, good laboratory practices, good manufacturing practices, laboratory accreditation. Course outcomes (COs): 50 llarg ## M.Sc. ZOOLOGY SYLLABUS Upon successful completion of the course, a student will be able to | | tompletion of the course, a student win be usic to | |-----|---| | CO1 | Identify the objectives, concept, applications and prospects of IPR, Patenting & Bioethics. | | CO2 | Demonstrate ability to utilize IPR, Patenting & Bioethics. | | CO3 | Exhibit an understanding of the concept and types of intellectual property rights and implementation of IPR in protecting biological inventions. | | CO4 | Comprehend various aspects of drafting of the patent application, types and specifications of the patent application, and various treaties and amendments made with exposure to the concept of international patenting. | | CO5 | Evaluate Social & ethical issues. | | CO6 | Invent new patent ideas, Industrial design and protection of GMOs. | | | | ## Suggested Reading and Text Books - 1. BARE ACT, Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt. Ltd., 2007 - 2. Kankanala C., Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd., 2007 CO-PO Mapping | CO-1 | UNI | appn | ığ | | | | | | | 2010 | DO11 | DO12 | DCO1 | DCO2 | DCO3 | DSO4 | |--------|-----|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | POIO | POII | POIZ | PSU1 | P302 | 1303 | 1304 | | Course | 101 | _ | _ | 1 | 2 | 2 | | C01 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | | _ | _ | | | _ | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | | | | | | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | | | | | | | | _ | | | CO4 | 1 | 2 | 2 | 2. | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO4 | 1 | 2 | 2 | | _ | | | _ | _ | _ | 1 | 2 | 2 | 1 | 1 | 2 | | C05 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | 003 | 2 | | _ | | | _ | | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | ı, I | 4 | | 1000 | _ | | 1 | - | | | | | | ~ | 1 1 | • | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated of the state th Mane ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC 401 | | | | | | |-------------|-------------------------|--|-----------------------|---|---|---| | Course Name | : Ecology and wild Life | | angana kabung dan 144 | | | | | Semester | : IVth Sem | A COLUMN TO THE REAL PROPERTY OF THE PARTY OF | | | | | | | | | L | T | P | C | | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Ecology and wildlife - 2. To understand ecological principles. - 3. To understand concepts of wildlife and different conservation measures **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### **UNIT-I** Definition, Scope, Importance, Application. Limiting Factors: Liebig's law of the minimum, Shelford's law of tolerance. Combined concept of limiting factor, Factor interaction. Homeostasis. Biogeochemical cycle (nitrogen, phosphorus, carbon & water cycle). Ecosystem. Concept; Energy flow; Food chains & Ecological pyramids. Habitat Ecology: Concept of habitats & ecological niche. ### UNIT-II Population: Concept & attributes: Biotic potential, Density, Natality, Mortality; Intrinsic rate of natural increase, survivorship curves. Population growth forms; Carrying capacity; Population regulation (Density-dependent and independent). Community: Concept & characteristics: Density, Dominance, Diversity & Stratification. Succession of communities; Key stone species. #### UNIT-III Biodiversity: Endemism, Genetic, Species and ecosystems diversity; Factors influencing biodiversity. Economic valuation of biodiversity: Concepts & Importance. Environmental pollution (Air, water, solid waste, Radioactive); Environmental Impact Assessment. Cumulative Impact Assessment of hydropower development; Environmental flows: need, methodologies, DRIFT, BBM. ### **UNIT-IV** Techniques in wildlife: Identification by natural marking, pugmarks, calls, etc. Marking passive marking (collars, tags, branding, rings etc.) and Dynamic marking (radio telemetry, satellite telemetry, radio isotopic tracers). Population estimation techniques: Absolute versus relative density, total count versus estimates. Census methods (Drive count, aerial count, point count). Indices (pug marks, droppings, nests, burrows, dens, calls). ### UNIT - V General introduction to Sanctuaries, National Parks and Biosphere Reserves of India, Endangered species: endangered fauna of Himalaya. Brief Account of Wildlife Acts and Their Amendments in India and World. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Tiger conservation: Tiger reserves in India; Management challenges in Tiger reserve. Wave ## M.Sc. ZOOLOGY SYLLABUS ## Reference Books - 1. Krebs: Ecology (4th ed.) Harper Collins College Publisher - 2. Negi: An Introduction to Wildlife Management, 1983. - 3. Majupuria T C: Wildlife Wealth of India Tecprress Service, Bangkok, 1986. - 4. Saharia: Wildlife of India Nataraj Publishers, Dehradun. - 5. Negi: Handbook of National Parks, Sanctuaries and Biosphere Reserves in India, 1995. - Negi: Himalayan Wildlife: Habitat and Conservation, 1992. Indus Publishing Company, New Delhi. Sharma: High Altitude Wildlife of India Oxford & IBH Publishing Co. Pvt. Ltd.1994. ### Text Books: - 1. Odum: Fundamentals of ecology, Saunders Co. Publ., 1993 Indian ed. - 2. Odum: Basic ecology, Saunders Co. Publ., 1993 Indian ed. - 3. N Arumugham Ecology, Concepts of: environmental biology ## Course Outcomes (COs): Upon successful completion of the course, a student will be able to | C01 | Remember ecological laws, Biogeochemical cycle, Ecosystem, Food chains and food | |-----|---| | 001 | web, Biosphere reserves, pollution, population, biodiversity and national park. | | CO2 | Understand the concept of population, Community, and succession | | CO3 | Applying knowledge about biodiversity & its importance | | CO4 | Analyze economic valuation of biodiversity, environmental pollution, wild life | | | conservation. | | C05 | Evaluate the techniques in wildlife, Population estimation. | | C06 | Generate knowledge about Sanctuaries, National Parks, and Biosphere Reserves | CO-PO Manning | CU | -PO M | appn | 15 | | | | | | | | | | | | | 2001 | |-------|-------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Cours | e PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | COI | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | - | 2 | 2 | 1 | 2 | 2 | | CO4 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO5 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | - | 1 | 1 | 2 | | C06 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated A \ Joh 53 -S& > Whave ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOC 402 | | - | | | |-------------|-----------------------------|---|---|---|---| | Course Name | : Immunology & Biochemistry | | | | | | Semester | : IVth Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit ## **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Immunology and Biochemistry - 2. To understand Immunological principles and their role in Human Physiology. - 3. To understand metabolism of Carbohydrate, Proteins, Fatty acids, etc. ## **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### UNIT-I Enzymes: Classification, concept of E-S complex, Lock and Key Hypothesis, Induced -Fit Hypothesis, Michaelis- Menten equation and its derivation, Carbohydrate Metabolism I: Pathway and regulation of Glycolysis, Gluconeogenesis, Glycogenolysis, Glycogenesis. #### UNIT-II Carbohydrate Metabolism II: Citric acid cycle and its regulation and pentose phosphate pathway and its regulation. Urea cycle (conversion of ammonia into urea), linkage between urea cycle and citric acid cycle) and its regulation. Conversion of nitrogen to ammonia by microorganisms, overview of amino acid biosynthesis. ### **UNIT-III** Fatty Acid Metabolism: β Oxidation and its regulation, Fatty Acid Biosynthesis and Regulation. Nucleic Acid Metabolism: Purine biosynthesis and its regulation, pyrimidine biosynthesis and its regulation. Salvage pathway for purine & pyramid in nucleotides. #### **UNIT-IV** Overview of the Immune System. Cells and Organs of the Immune System. Antigens, Antigenicity versus Haptens & Epitopes Immunoglobulins: Structure and Function. Immunogenicity. Histocompatibility Complex.
Antigen processing and presentation. Structure and functions of BCR & TCR. #### UNIT-V Cytokines. The Complement System. Cell mediated cytotoxicity: Mechanism of T cell & NK cell mediated lysis. Ab-dependent cell mediated cytotoxicity (ADCC) Overview of Hypersensitivity and Autoimmunity. Introduction to Transplantation. Vaccines: Active and Passive Immunization Introduction to Monoclonal Antibodies and Hybridoma technology. Antigen-Antibody Interactions: Precipitation Reaction, Agglutination Reactions, RIA, ELISA, Western Blotting, Immuno precipitation, Immuno-Mars Whi fluorescence. 54 ## M.Sc. ZOOLOGY SYLLABUS ## Reference Books - 1. Lehninger: Principles of Biochemistry, 4th ed., Nelson & Cox, WH Freeman and Company, 2007 - 2. Voet&Voet: Biochemistry, 2nd ed., Wiley & Sons. - 3. Berg, Tymoczko, Stryer: Biochemistry, 5th ed., WH Freeman and Company, 2003. - 4. Garett & Grisham: Biochemistry, 4th ed., Brooks/Cole Cengage learning, 2010. - 5. Roitt, Male &Brostof: Immunology (3rd ed). - 6. Deb A C:, Fundamentals of Biochemistry - 7. Wilson & Walker: Practical Biochemistry (4th ed.). ## Text Books: - 1. Kuby: Immunology (6th ed.). - 2. HR Singh and Neeraj Kumar: Animal physiology and Biochemistry: Vishal Publishing House. - 3. SS Lal: Immunology: Rastogi Publication - 4. Abbas Abdul K: Cellular and molecular immunology ## Course Outcomes (COs): Upon successful completion of the course, a student will be able to | CO1 | Remember basic Biochemical & Immunological theories | |-----|---| | CO2 | Understand the concept immunity, antibody, antigen, and synthesis of biomolecules | | | | | CO3 | Explain the biochemical & immunological concepts. | | CO4 | Compare and classify the immune system, immunity, immunoglobulins, biomolecules and | | | enzymes | | CO5 | Summarize and distinguish the immune system, types and biomolecules (metabolism) | | C06 | To assemble the immunological & biomolecular techniques | | | | **CO-PO** Mapping | | | арри | | | | | | | | | | | | | | | |--------|-----|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | | | | _ | | | | | _ | | | | | | | | | | CO1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | l | 2 | 2 | 2 | 1 | 2 | 2 | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | - | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO4 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO5 | 2 | 1 | 2 | 2 | 1 | - | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated #### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE 403 (Elective-I Any One) | | | | | |-------------|---------------------------------|----|---|---|----| | Course Name | : Fisheries Science | | | | | | Semester | : IVth Sem | | | | | | | | L | T | P | C | | | | 03 | 0 | 0 | 03 | L - Lecture T - Tutorial P - Practical C - Credit ## **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Fisheries Science and its aspects. - 2. To learn various culture methods in fisheries - 3. To understand Fish preservation, processing & economic aspects of fisheries. - 4. To study recreational fishery and co operative movements. #### **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### UNIT - I Aquaculture: Scope, importance and present status. Role of fertilizers, water quality and its maintenance. Control of aquatic weeds, insects and predatory fishes. #### UNIT-II Fish nutrition: Development of natural food and supplementary feeding. Fish Transportation and its types, Transport of fish seed. Nutritive value of fish, biochemistry of fish flesh of Indian major carps. ### UNIT - III Harvesting and Post harvesting. Fish preservation and processing techniques and marketing of fishes Fish byproducts and their uses. ### **UNIT-IV** Capture and Ornamental Fishery: Rivers, Lakes, Dams / Reservoir fishery- Problems and perspectives in Capture fisheries. Estuarine fishery. Characteristics and species dynamics. Marine fishery: Coastal, Off shore and deep sea fishery. Exclusive Economic Zone. (Hilsa, Oil sardine, mackerel, Bombay duck, Sole, Ribbon, Shark and Rays). #### UNIT- V Recreational fishery and Cooperative movements. Fish Farmers Development Agencies (FFDA). Climate change and fishery.. Gov participation in Aquaculture. 1/4 56 Mas Kas ### **Text Books** 1.C.B.L. Srivastava: Fish Biology, Narendra Publication House, 2008. 1. SS Khanna & H.R. Singh: Fish & Fisheries ## Reference Books - 1. Dr. J. Ojha: Biology of Hill Stream Fish, Narendra Publication House, 2002. - 2. Kyle: The Biology of Fishes, 2007. - 3. H.R. Singh: Advances in Fish Biology, Hindustan Publishing Corp., 1994. - 4. J.D. Munshi& J.S.D. Munsi: Fundamental of Freshwater Biology, Narendra Publ. House,1995.Carlander: Handbook of Freshwater Fishery Biology, vol. 2, Iowa State Univ. Press,1977 Course Outcomes (COs): Upon successful completion of the course a student will be able to | CO1 | Remember of Aquaculture its scope and importance | |-----|---| | | Culture systems. Fish culture in ponds and reservoirs, Culture in rice fields, bheries, Cage | | | culture, Pen culture, Monoculture polyculture | | CO2 | Understand Preparation and maintenance of fish farm | | CO3 | Applying induced breeding and its uses, biodiversity of fishes. | | CO4 | Analyzing different outture practices Descriptional fishery and Cooperative movements | | CO4 | Analyzing different culture practices, Recreational fishery and Cooperative movements | | CO5 | Distinguish and summarize the nature of various fisheries like Mahseer, Schizothorax, fishery | | | capture and ornamental fishery | | CO6 | Create techniques of Fish preservation and processing techniques & Nutritive value of fish | **CO-PO** Mapping | | | | | - F I | | | | | | | | | | | | | | |---|--------|-----|-----|-------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | | CO1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | - | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | - | CO3 | 2 | 2 | 1 | 1 | - | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | | 1 | CO4 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | Ì | CO5 | 2 | 1 | 2 | 2 | 1 | - | 2 | 2 | 2 | 2 | 1 | 2 | - | 1 | 1 | 2 | | Ì | CO6 | 2 | 2 | 1 | 1 | - | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated de de Harl Wand Wand ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE 404 (Elective-I, Any One) | | | | | |-------------|----------------------------------|---|---|---|---| | Course Name | : Applied Entomology | | | | | | Semester | : IVth Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit ## **COURSE OBJECTIVES:** The objectives of this course are 1. To know about Applied Entomology 2. To know various insects of household, vegetable, store grain and fruit pests 3. To understand IPM #### **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### UNIT - I Insects in relation to man: sericulture, apiculture and lac culture and its parasites, predators and diseases. Insect of veterinary importance; sand fly, horse fly, sucking louse, fleas. #### UNIT - II Brief knowledge of important household, vegetable, store grain and fruit pests with special reference to distribution, habits, habitat, nature of damage, life history and control. ### **UNIT-III** Cut worm (Agrotis ipsilon) Cabbage cateripillar (Pieris brassicae) Rice weevil (Sitophilus oryzae) Mustard aphid (Lipaphis erysimi) Red cotton bug (Dysdercus cingulatus) Woolly apply aphid (Eriosoma lanigerum) Termite: important termites of Fam. Termatidae (Odontotermis sp.) #### **UNIT IV** Origin of pests, Insect pest control; mechanical, physical, culture, biological. Chemical control: chemosteril ants, radiation. #### **UNIT V** Integrated Pest Management (IPM), Role of pheromones and hormones in insect pest management. Legislative control of insect pests and quarantine law. Nomenclature and classification of insecticides on the basis of mode of action, chemical nature. Environmental factors influencing effectiveness of insecticides, persistence, biodegradability, hazards of insecticides, precaution and antidotes. Jan Jan Na # M.Sc. ZOOLOGY SYLLABUS Course Outcomes (COs): Upon successful completion of the course a student will be able to | CO1 | Remember Insects in relation to man (Sericulture, apiculture, lac culture) | |-----|--| | CO2 | Understand Brief knowledge of important household (Vegetable, store grain fruit pests with special reference to distribution, habits, habitat, nature of damage, life history and control) | | CO3 | Applying different kinds of IPM techniques. | | CO4 | Analyzing origin of pests and Insect pest control & culture techniques. | | CO5 | Evaluate Integrated Pest Management (IPM), Role of pheromones and normones in insect pest management. | | CO6 | Generate Environmental factors influencing effectiveness of insecticides. | | | CO-I | PO M | appin | g | | | | | | | | | | | 7002 | DSO4 | |--------|------|------|-------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PS03 | 1304 | CO1 | _ | _ | | 1 | _ | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2. | 1 | 2 | 2 | | C01 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 4 | 1 | | | | | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | | C03 | 2 | 2 | 1 | 1 | 2 | 2 | .1 | 2 | 2 | 1 | | | | | _ | 1 | | CO4 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | | - | - | _ | _ | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2. | | CO5 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 4 | | 1 | | | | C06 | 2 | 2 | 1 | 1 | 2. | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | | 000 | 2 | _ | 1 | - | | _ | _ | | | | | | | | | | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE 405 (Elective-I, Any One) | | | | <u> </u> | |-------------|----------------------------------|---|---|---|--| | Course Name | : Applied Environmental Biology | | | - | and the second s | | Semester | : IVth Sem | | | | ., | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit ## **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Applied Environmental Biology - 2. To understand tests its importance and effects of various environmental parameters - 3. To understand EIA, IPM and Biological Pests control #### **Course Contents** No. of Credits 03 Total No of class stipulated 45Hrs #### UNIT - I Air: Air pollutants (chemistry, sources & control); Air Quality standards, carbon credits, carbon footprint, Thermal pollution sources and effect. Water: Biochemical aspects of water pollutants (domestic, industrial & agricultural waste). Waste water treatment (Aerobic & anaerobic treatment processes); Water quality standards. Case study-Ganga Action Plan. Noise Pollution: Effects of noise and its control. ## UNIT - II Radioactive fallouts its effects & safe disposal. Solid waste management: Sources & control methods (composting, Vermi Culture, Biogas). Hazardous waste & their management. Bioremediation (herbicides, pesticides, hydrocarbons, oil spills). Ecological Restoration: wasteland & its reclamation & restoration. ### UNIT - III Environmental Impact Assessment (EIA): Case study of River valley projects & Mining. Bioassay: Dose-response relationships; Frequency; Response & cumulative response; statistical concepts (LD50-potency v/s Toxicity). Concept of hyper & hypo sensitivity factors affecting Toxicity. #### **UNIT-IV** Ecological experimentation & models: Theories & hypothesis; experimentation; Inductive & deductive methods. #### **UNIT-V** Models: Analytical & simulation models; Validation & verification. Biological pest control: Use of predators; Parasites, parasitoids & pathogens, Integrated Pest Management. Course Outcomes (COs): Upon successful completion of the course, a student will be able to | 001 | successful completion of the course, a student will be able to | |-----------------|--| | CO ₁ | Remember about Air pollution (Air pollutants) | | | Water: Biochemical aspects of water pollutants, Waste water treatment, Water quality | | | standards | | CO ₂ | Understand Radioactive fallouts its effects & safe disposal | | CO ₃ | Applying Environmental Impact Assessment (EIA), IPM | | CO4 | Analyze Ecological experimentation & models | | CO5 | Evaluate Analytical & simulation models | | CO6 | Generate various environmental parameters & techniques to check environmental hazards. | **CO-PO** Manning | | CO-1 | OW | appin | ıg | | | | | | | | | | | | 4.5 | |--------|------|-----|-------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | CO1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | | CO2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 - | 1 | 2 | 2 | 2 | 1 | 2 | 2 | | CO3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | | CO4 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO5 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated oft. A Joseph ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE 406 (Elective-II, Any One) | | | | | |-------------|---|---|---|---|---| | Course Name | : Research Methodology in fishery science | | | | | | Semester | : IV th Sem | | | | | | | | L | T | P | C | | | | 0 | 3 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit ## **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about research methodology in fisheries science. - 2. To estimate water quality parameters for the survival of fishes - 3. To understand Morphometric & meristic analysis of important hill stream carps and catfishes ## **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### UNIT I Research and scientific methods, Criteria of good research, Compilation of research paper, Presentation of the research paper, Preparation of research proposal, Compiling bibliography, Samplings #### **UNIT II** Water Chemistry and substrate conditions: Dissolved Oxygen, Free Carbon di oxide, Total alkalinity, Total hardness, pH, BOD, Chlorides, SO4- S, PO4-P and NO3-N and rated in instrumentation (probes, meters) Qualitative and quantitative estimation of plankton & periphyton. Fish sampling and preservation. Morphometric & meristic analysis of important hill stream carps and catfishes. Stream order wise study of distribution and diversity of fish fauna from Garhwal Himalaya (Bahuguna method). Truss analysis. Use of Keys and Monographs for fish identification. #### **UNIT III** Importance of statistics in biological research. Calculation of mean, median and mode, range, variance, standard deviation. Students-t test. Chi-square and F-test of significance, Analysis of variance (ANOVA), Introduction to statistical software's. #### **UNIT IV** Calculation and importance of Shannon Wiener Diversity Index, species richness and Margalef diversity index. Dobriyal Bahuguna drifting index (DBDI). Regression analysis and coefficient of correlation. Cluster analysis, Factor analysis and Discriminate analysis. Nour Source Nource Nource 62 ## M.Sc. ZOOLOGY SYLLABUS Course Outcomes (COs): Upon successful completion of the course, a student will be able | | eccessful completion of the course, a student will be able | |-----------------|--| | COI | Remember Research and scientific methods, fish sampling & preservation, diversity of | | | fish fauna, statistical method & analytical methods | | CO ₂ | Understand Water Chemistry and substrate conditions | | CO3 | Applying Importance of statistics in biological research & in fisheries. | | CO4 | Analyze Calculation and importance of Shannon Wiener Diversity Index & other statistical methods | | CO5 | Evaluate Cluster analysis, Factor analysis, Discriminate analysis. Calculation and importance of Shannon Wiener Diversity Index. | | CO6 | Create new technological techniques in biological research. | **CO-PO Mapping** | | CO-1 | OM | appin | g | | | | | | | | | | _ | 2 | DCO4 | |--------|------|-----|-------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | F3U4 | | | - | | | | | | | | | | | | | | | | | CO1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | | CO2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | | CO3 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | | CO4 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | | CO5 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 . | | CO6 | 2 | 2 | 1 | 1 | 1 | | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated du De Notane Van 63 ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE 407 (Elective-II, Any One) | | | | | |---------------|--------------------------------------|---|---|---|---| | Course Name | : Research Methodology in Entomology | | | | | | Semester/Year | : IV th Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit **COURSE OBJECTIVES:** The objectives of this course are - 1. To know about Research Methods in Entomology. - 2. To understand Entomological techniques. - 3. To understand Application of Statistics in Entomology. **Course Contents** No. of Credit-03 Total No of class stipulated = 45Hrs #### UNIT I Introductory Entomology Research methodology in entomology in introduction. Role of entomology in agriculture (Beneficial and Harmful insects). Medical entomology: Disease vectors (Mosquito, Sand fly, tsetse fly, pathogens, lifecycle and diseases). Veterinary entomology: Vector insect (Ticks, Mites, Flies, pathogens, lifecycle and diseases). Forensic. Entomology: Principle, Forensic entomological flies, use of human lice in forensic entomology, Importance. ### **UNIT II** Entomological techniques –I Type of sampling survey, Different Collection Methods, Collection of wild flies and Domestic insects. Collecting Insect in the wild area-Tools and Equipment's, Preparing and using baits, collecting from natural substances, Collection permission from govt. agency like forest department State Biodiversity Board (SBB), National Biodiversity Authority (NAB), Transporting live adults or larvae. Preservation of insects, classification of insects up to the level of families with hands-on experience in identifying the families of insects and Catalogues. Insect Laboratory and rearing equipment, Experimental designs in field and Laboratory Observation techniques and Molecular techniques in insect taxonomy. Mortality correction, Bioassay: Principles, Importance, Factor affecting, Procedures apparatus used. #### **UNIT III** Entomological Techniques –II Trophic relationships. Use of ecological data, insect diversity: Indices, richness, rarity. Population estimates. Coexistence and Competition. Distribution patterns. Study of terrestrial/aquatic insect biodiversity, physic-chemical parameters of water (turbidity/transparency, velocity, pH, temperature, estimation of CO₂, O₂ hardness). #### **UNIT IV** Application of Statistics Descriptive statistics, Chi-Square test, Student t-test. Analysis of variance. Course Outcomes (COs): 64 Wane ## M.Sc. ZOOLOGY SYLLABUS Upon successful completion of the course a student will be able to | | ceessful completion of the course a student will be able to | |-----|--| | CO1 | Remember research methodology in entomology, Role of entomology in agriculture | | CO2 | Understanding entomological techniques, Type of sampling survey, Different Collection Methods Collection of wild flies and domestic insects, Insect Laboratory and rearing equipment | | CO3 | Applying Entomological techniques, Trophic relationships, Use of ecological data, insect diversity, Indices, richness, Population estimates, Coexistence and Competition. | | CO4 | Analyzing application of statistics in entomology, role of entomology in different fields & insect diversity. | | CO5 | Evaluating entomological techniques & statistical techniques. | | CO6 | Create new techniques in about population estimation, statistical methods etc. | **CO-PO** Mapping | | | | | արրու | | | | | | | | | | | | | | |---|--------|-----|-----|-------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | c | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | C | O1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | • | 2 | 1 | | C | O2 | 1 | 2 | 1 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | | C | Ю3 | 1 | 2 | 2 | 1. | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | | C | O4 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | | C | O5 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | - | 2 | | C | O6 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated de Va Wane War 65 ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE 408 (Elective-II, Any One) | | | | | |---------------|--|---|---|---|---| | Course Name | : Research Methodology in Environmental Biolog | y | | | | | Semester/Year | : IVth Sem | | | | | | | | L | T | P | C | | | | 3 | 0 | 0 | 3 | L - Lecture T - Tutorial P - Practical C - Credit ## **COURSE OBJECTIVES**: The objectives of this course are - 1. To know about Research methods in Environmental Biology - 2. To understand measurement of environmental parameters. - 3. To understand Parametric and Nonparametric Tests. ## **Course Contents** $No.\ of\ Credit-\ 03$ Total No of class stipulated = 45Hrs #### UNIT-I Importance and need of environmental research. Problem identification, objectives, significance, scope and limitations. Literature survey. Importance and designing of the problem to be undertaken. Field survey: Site selection, source selection for data acquisition. Sampling strategies, Sample size, Frequency, Bias, Error. Project Report Preparation. ### **UNIT-II** Measurement of solar radiation, wind velocity, air quality-monitoring, measurement of oxides of nitrogen, carbon, sulphur, lead, tropospheric ozone, methane, aerosol, pesticide. Stack sampling, sample collection for particulate matters (Dustfall collection, High volume sampler), indoor air pollutants (radon) measurement. #### **UNIT-III** Water quality analysis: Measurement of water temperature, velocity, depth, transparency, dissolved oxygen, free carbon dioxide, pH, turbidity, hardness, alkalinity, BOD, COD, dissolved nutrients (Nitrates, phosphates, sodium, potassium, chloride, etc.), heavy metals. Sampling methods for terrestrial flora and fauna (quadrate method). ### **UNIT-IV** Sampling methods for aquatic fauna and flora (plankton, periphyton, micro and macroinvertebrates, nekton, etc.). Soil types, measurement of soil pH, water holding capacity, organic matter, soil nutrients (nitrate, nitrite, calcium and magnesium), Sampling of soil fauna. Sampling of soil for microbial diversity. Application of statistical Descriptive and regression analysis in Environmental Science: Parametric and Nonparametric Tests, Hypothesis testing, t-test, Z-test, F-test, multivariate test chi square test, Kruskal Wallis test. Statistical Software's: Excel, Statistical, SPSS, etc. hus 66 ## M.Sc. ZOOLOGY SYLLABUS Course Outcomes (COs): Upon successful completion of the course, a student will be able to | Course (| futcomes (COs): Upon successful completion of the course, a season | |----------|---| | CO1 | Remember importance and need of environmental research, Field survey: Site selection | | | Understand Measurement of solar radiation wind velocity, air quality monitoring. | | CO3 | Apply sampling methods for aquatic fauna and flora, Application of statistical Descriptive and regression analysis in Environmental Science | | CO4 | Analyze Water quality parameters, (velocity, depth, transparency, dissolved oxygen, free carbon dioxide, pH, turbidity, hardness, alkalinity, BOD, COD, Dissolved nutrients) & sampling methods | | CO5 | Evaluate Sampling techniques & statistical techniques | | CO6 | Create new techniques in about research & environment. | **CO-PO** Mapping | - | Course P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 PS04 | | | | | | | | | | | | | | | | |--------|---|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | | | | | | | | | 2 | | | | | | | | | | | CO1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 . | 1 | 2 | 2 | 1 | | CO2 | 1 | 2 - | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | | CO3 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | | CO4 | 1 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | | CO5 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | | CO6 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 3: Highest Correlated, 2: Medium Correlated, 1: Lowest Correlated de. D James Van ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL409 | | | | | | |-------------|---------------------------------------|---|---|---|---|--| | Course Name | : Lab Course I Based on MZOC401 & 402 | | | | | | | Semester | : IV rd sem | | | | | | | | | L | T | P | C | | | | | 0 | 0 | 4 | 4 | | ## L - Lecture T - Tutorial P - Practical C - Credit List of Practical's: #### No. of Credits=4 - 1. To study different laws of Ecology (law of the minimum, Shelford's law of tolerance) - 2. To study the different ecosystems and differentiation of various ecosystem biota. - 3. To study pond ecosystem and thermal stratification in water body. - 4. To study the biogeochemical cycle and different food chains and their
trophic levels. - 5. To study community, species and its types. - 6. To study the population ecology, Natality mortality and different curves. - 7. Study of Biodiversity, pollution type, National parks, biosphere reserve etc. - 8. Identification of biomolecules, (Carbohydrate, protein, lipids): - 9. To study hypothesis in Enzymes functioning. - 10. Immunity and its types. - 11. To study physical, biochemical factors in immunity. - 12. Lymphoid organs, (Primary and secondary lymphoid organs) - 13. Antigen Antibody structure and its type - 14. Antigen Antibody interaction and different reaction types in it. - 15. To study western blotting technique. - 16. To study vaccines and its types. ## Course Outcomes (COs): ## Upon successful completion of the course, a student will be able to | | Identify and observe the ecosystems ecology biodiversity biomolecules and immune system. | | |-----|--|-----------| | | Distinguish the ecosystem and immunological aspects | | | | Examine the ecosystem and its trophic levels, biomolecules & immunoglobulins, antigen, antibody presence | | | CO4 | Diagrammatic representation of food chain food web, lymphoid organs etc | ٦ | | | Biomolecular, immunological and bio stat tests in ecology | \forall | | CO6 | Recognize the presence of ecological biodiversity, and tests of antigen antibodies, biomolecules and blotting techniques | 1 | Ware 400 68 ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL410 | | | | | |-------------|---|---|---|---|---| | Course Name | : Lab Course II Based on MZOE 403 & 406 | | | | | | Semester | : IV rd sem | | | , | | | | | L | T | P | C | | | | 0 | 0 | 3 | 3 | ### L - Lecture T - Tutorial P - Practical C - Credit ## **List of Practicals:** No. of Credits=3 - 1. To Examine the water quality parameters of different water bodies and their analysis. - 2. Aquatic weeds and their types - 3. Fish feed formulation calculation - 4. To study fish transportation models. - 5. To study fish biproducts. - 6. To study fishery and their types - 7. To study the water chemistry - 8. To study Quantitative and Qualitative estimation of planktons. - 9. To apply biostatistics in fishery science. - 10. Application of Dobriyal Bahuguna drifting index (DBDI) - 11. Application of different diversity indexes including Shannon Wiener Diversity Index ## **Course Outcomes (COs):** Upon successful completion of the course, a student will be able to | | pon succession completion of the contract t | |-----|--| | CO1 | Remember the ichthyology, fisheries, and research methodology terms | | CO2 | Understand the application of basics of ichthyology, fisheries, and research methodology in experiments | | CO3 | Apply the techniques for the fresh water ecology examination | | CO4 | Analyze the various techniques and their effects for fresh water ecology and animals. | | CO5 | Evaluate the fish experimentation techniques and their importance | | CO6 | Create and develop the diversity and distribution behavioral aspects and economic | Wave Mary 69 ### M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL410 | П | | | | |-------------|---|---|---|---|---| | Course Name | : Lab Course II Based on MZOE 404 & 407 | | | | | | Semester | : IV rd sem | | | | | | | | L | T | P | C | | | | 0 | 0 | 3 | 3 | L - Lecture T - Tutorial P - Practical C - Credit List of Practicals: No. of Credits=3 - 1. To study important insects to man (sericulture, apiculture and lac culture) - 2. To study important insects in veterinary science sand fly, horse fly, sucking louse, fleas - 3. To study important household, vegetable, store grain and fruit pests - 4. To study Cut worm (Agrotis ipsilon) Cabbage cateripillar (Pieris brassicae) Rice weevil (Sitophilus oryzae) Mustard aphid (Lipaphis erysimi) Red cotton bug (Dysdercus cingulatus) Woolly apply aphid (Eriosoma lanigerum) - 5. To study various termites - 6. To study mechanical physical and chemical control of insects. - 7. To study Environmental factors influencing effectiveness of insecticides, persistence, biodegradability, hazards of insecticides, precaution and antidotes. - 8. To study medical entomology (Mosquito, Sand fly, tsetse fly, pathogens, lifecycle and diseases Ticks, Mites, Flies, pathogens, lifecycle and diseases) - 9. To study collection methods of insects pest etc. - 10. To study the apparatus used in entomology - 11. To study physio chemical parameters of water in relation to insects. - 12. To study application of biostatistics in entomology ## Course Outcomes; | CO1 | Collection identification classification and preservation of different economically | |-----|---| | | important insects. | | CO2 | Identification classification and general study of the various specimens of insects | | | To study the different type of pest harmful for crops and stored grains. | | | preparation and study of the various permeant slides of insects | | CO5 | Evaluate the insect's techniques and their importance | | CO6 | Create and develop the diversity and distribution behavioral aspects and economic importance of insects through field trips/case/ study experimental setup etc. | Wong war 70 ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOL410 | | | | | |--|------------------------|---|---|---|---| | Course Name : Lab Course I Based on MZOE 405 & 408 | | | | | | | Semester | : IV rd sem | | | | | | | | L | T | P | C | | | | 0 | 0 | 3 | 3 | ## L - Lecture T - Tutorial P - Practical C - Credit ### List of Practical's: No. of Credits=3 - 1. To study air pollution pollutants of area. - 2. To study air quality standard. - 3. To study water quality parameters (water temperature, velocity, depth, transparency, dissolved oxygen, free carbon dioxide, pH, turbidity, hardness, alkalinity, BOD, COD, dissolved nutrients Nitrates, phosphates, sodium, potassium, chloride, etc.) - 4. To study Ecological experimentation & models - 5. To study biological pests. - 6. To study measurement of oxidesof nitrogen, carbon, Sulphur, lead, tropospheric ozone, methane, aerosol, pesticide. - 7. To study sampling methods for aquatic fauna and flora (plankton, periphyton, micro and macroinvertebrates, nekton, etc.) - 8. To study application of biostatistics in environmental biology. - 9. To study soil quality and its analysis. ### **Course Outcomes**; | CO1 | Remember about basics of environment. | |-----|--| | CO2 | Understand the techniques importance in experimentation. | | CO3 | Illustrate the knowledge about the various environmental parameters. | | CO4 | Analyze the pollution levels in various ecosystems. | | CO5 | Evaluate the various parameters. | | CO6 | Create and develop the diversity and distribution behavioral aspects and economic importance of environment through field trips/case study/ experimental setup etc | Nufame North To ## M.Sc. ZOOLOGY SYLLABUS | Course code | : MZOE411 | | | | | |-------------|------------------------|---|---|---|---| | Course Name | : Dissertation | | | | | | Semester | : IV rd sem | | | | | | | | L | T | P | C | | | | 0 | 0 | 9 | 9 | L - Lecture T - Tutorial P - Practical C - Credit No. of Credits=9 Course Objectives: The objectives of this course are - 1. The main objective of this course to develop awareness and interest towards research. - 2. The main objective of this course to development of scientific temperament. ### **Course Content:** The area of dissertation shall be assigned to the students at the end
of second semester based on the expertise available in the Department. The project-oriented dissertation must be submitted by the end of fourth semester. During the course of completion of dissertation work the students will be required to complete various assignments given to them by their respective supervisors or the Head of Department for the purpose of their evaluation. Beside classroom seminars, the students will have to present their dissertation work in the form of seminar before the board of examiners including the supervisors which will be followed by viva voce examination #### **Course Outcomes**; | CO1 | Designing of research work/Plan. | |-----|--| | CO2 | Predict Formulation of research methodology acc to specific work/ topic. | | CO3 | Methods implementation. | | CO4 | Gathering of research data. | | CO5 | Application of statistics or statistical tools and software. | | CO6 | Research result formulation and interpretation | Jens Vier